AR

AFIT/GCE/ENG/93J-01

ELECTE
s JUL 061983 %
v A

ANNS
An X Window Based Version
of the
AFIT Neural Network Simulator

THESIS
Ching-Seh Wu
Captain, ROCAF, Taiwan

AFIT/GCE/ENG/93J-01

Approved for public release; distribution unlimited

- | 93-15241
0T ne IRRIATNAN .,

AFIT/GCE/ENG/93J-01

ANNS
An X Window Based Version
of the
AFIT Neural Network Simulator

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Engineering

Ching-Seh Wu, B.S.
Captain, ROCAF, Taiwan

June, 1993 DTIC QUaLrTy 13

Approved for public release; distribution unlimited

Accesion for

NTIS CRA&
DTIC TAB 0
Unannouniced]

Justification

By

Distisbution]

Avzilabitity Codes

T | Avall and]or
Dist Spadial

i

Ml |

Preface
The objective of my research was to develop a neural network simulator us-
ing the techniques of modern software engineering. An X window based version
of the AFIT Neural Network Simulator; or ANNS, is the result of this research.
With respect to reach the goal of this thesis efforts, a hybrid software engineering
paradigm which combines the best characteristics of the classic life cycle, prototype,

and iterative methodologies was used for developments.

This thesis documents the analysis, design and implementation of the ANNS
system: This system environment was developed for the study and research of
dynamical changes in patterns of weight and nodes for artificial neural networks.
Graphical representations of neural network algorithm simulations are displayed us-
ing X window based graphical routines. This system provides a user interface for
neural network programmers that they can develop and add their own design of
new neural network paradigms or algorithms into this system easily and become an

integrated system:

I have many thanks to my thesis advisor; Dr. Steve K. Rogers, for his encour-
agement and enthusiasm, and allowing me almost complete freedom over the design
and implementation of ANNS. I also wish to thank my committee members, Lt.
Col. Phil Amburn and Dr. Denny Ruck, for their hints, suggestions, and editing of
the draft manuscripts. I also want to thank Dr. Gregory L. Tarr for his wonderful

NeuralGraphics.

I especially want to thank my beautiful wife, Pi-chiao (Joy) Yu, who basically
lived almost two years as a single parent. I cannot repay her for the patience;
understanding and support she provided during these twenty-seven months in United
States. I also wish to thank my sixteen month old son, Kevin Wu, for making me

smile when I needed it most. Finally, I want to extend my gratitude to everyone in

il

o

my family in Taiwan - my parents, my parents in law, my two brothers, and my two

brothers in law and three sisters in law. Thank you very much !

Ching-Seh Wu

iii

Table of Contents

Page
Preface e 11
List of Figures i v v it it it i e e e e e ix
Abstract - L e Xii
L Introduction 1
1.1 Background 2
1.1.1 Avtificial Perception . . .«« 3
1.2 Problem 4
1.3 Research Objectives0.:.. 4
14 Assumplions . it 5
1.5 Approach i 6
1.6 Summary i i e e e 7
II. Literature Revicw i« . i v i i i it i e ie e 9
2.1 Introductionl i e 9
2.2 Object-Oriented Design « .« 9
2:2.1 Object-Oriented Design Concepts. 10
2.2.2 A Sample Object Model. 13
2.2.3 Object-Oriented Design Process. 15
2.2.4 Booch’s Object-Oriented Design Process. 17
2.2.5 Advantages and Strong Points of Object-Oriented
Design.c.. i, .+.... 20
2.2:6 Object-Oriented Design and Simulation 22
2.3 Graphical User Interfaces 23

iv

L

IV.

2.4

2.5

2.6

Design Methodology, System Requirements Analysis arnd Preliminary

2:.3.1 User Interface Design.
2.3:2 User Interface Characteristics.
2.3.3 User Guidance:...c.o.i.....
The X Window System -
2.4.1 X Window System Principles
242 Toolkits.
The current status of the NeuralGraphics
2.5.1 Basic Structures and Design Considerations.
2.5.2 Objects and Operations.
2.5.3 Initialization Modules.
2:5.4 The Main Program Loop
SUmmary e i e e e e e e e

Design . . i i e e e e
3.1 Introduction,
3.2 Design Methodology.
3.2.1 Current Methodologies.
3.2.2 The Methodology Decision.
3.3 System Requirements Analysis.
3.3.1 End-User Requirements Analysis.
3.3.2 Client-Programmer Requirements Analysis.
3.3.3 Enumerated Requiremenis for ANNS System.
3.4 Preliminary Design
35 Summary e
Detailed Object-Oriented Design and Implementation
4.1 Introduction

66
66

4.3 Detailed Object-Oriented Design 67

4.3.1 Main Process Window Module 69
4.3.2 MainMenuModule:.... 69
4.3.3 Central Control Window Module 69
4.3.4 Environment Control Window Module 72
4.3.5 Exit Window Module 72
4.3.6 Graphical View Window Module 74
4.3.7 Master Control Window Module T4
4:.3.8 Multilayer Perceptron Paradigm 75
4.4 Implementation :t 75

4.4.1 Creating and Mapping Objects from Detailed De-

sign Modules 78
4.4.2 Types of Objectsin XView. 78
4.4.3 Implementation Decisions 80

4.4.4 GUI Replacement Strategy from Silicon Graphics

for Multilayer Perceptron Paradigm 83

4.5 'Testing Appraoches o L. 84
451 UnitTests e e e e 84

4.5.2 External Function Tests 84

4.5.3 Integration Tests 85

454 SystemTests 85

4.5.5 AcceptanceTests 86

4:5.6 Installation Tests 86

4.5.7 Regression Tests 86

4.6 Results of Implementaion 86
4.7 Summary e e e e e e e 92

vi

V. Conclusions and Recommendations . :::......... 95
51 Introduction . . . : . . . v i v i i 95
5.2 Research Summaryu.... 95
5.3 Recommendations for Further Research 96

5.3.1 Develop and Integrate all NN Paradigm Compo-

nentsinto ANNS 97
5.3.2 A Network Version of the ANNS. A
5.3.3 Portability Considerations 97
54 Conclusions e e e e T 1
Appendix A. ANNS User’s Manual 99
A.l Introduction L L 99
A:2 Backgrounds Needed for Users 100
A.2.1 Ideas of Computer Gambling. 10¢
A.2:2 Multilayer Perceptron Paradigm 104
A3 GettingStarted - L L Lo o Lo 105
A31 SetPath 105
A32 TheMouse 105
A33 TheMainWindow 106
A34 Iconify ANNS 107
A35 TheMainMenu................... 107
A3:6 Master Control Panel 113
Ad Setup e 116
A4l SetupDataFiles 117
A.4.2 Backpropagation Paradigm Input Parameter Op-
tions L L 118
A5 Runsimulation 120

vil

Appendix B. ANNS Programmer’s Guide
B:l Introduction S i e e .
B.2 Backerounds Needed for Programmers
B.3 Overviewof ANNS
B.3.1 Objects Associated with X Window System
B.3.2 ANNS Architectureo
B.3.3 Object Creating and Mapping Using XView . .
B.3.4 ANNS Directory Structure
B.4 General Procedure for Adding a New NN Paradigm . . .

B.4:1 Create a working directory..
B.4.2 BackProp Subditectory
Appendix C. ANNS User Evaluation Form
Appendix D. The ANNS Source Codes
Bibliography

viii

12.
13.

14.

15.
16.
18.
19.

20.

22.

List of Figures

Page
Inheritance for graphic figures Lo oL 11
Object Model of Windowing System 14
The X Client-Server Model e e e 30
Basic X Environment = 0L L. 32
Typical X Windows Configuration: 33
The Classic Life Cycle Model - 43
ANNS Design Methodology 46
The ANNS System Overview : . . : . :c v oo oo ve et 49
The Top=Level Object Functional Model of Design for ANNS System 50
The Functional Decomposition Diagram Level 1: Manage ANNS System 52
The Functional Decomposition Diagram Level 2: Manage NN Algo-
rithm Simulation L L, 53
The Functional Decomposition Diagram Level 3: Modify Paradigm . 54
The Functional Decomposition Diagram Level 2: Manage Simulation
Environment, 55
The Functional Decomposition Diagram Level 3: Manage NN Algo-
rithm Window 56
High-Level Object Class Structure ::....... 59
ADT Specification for ANNS window Object - . - 60
Instancesof windows . . « 61
ADT Specification for ANNS meénu Object 62
ADT Specification for ANNS component Object R i %
Structure of NN Algorithm Windows 64
Booch Module Symbols e e e e e 68
The Architecture of ANNSat the TopLevel 70

ix

Page
Module Diagram for Main Process Window Tl
Module Diagram for Main Menu Module 71
Module Diagram for Central Control Window Module 72
Module Diagram for Environment Control Window Module 73
Module Diagram for Exit Window Module 74
Module Diagram for Graphical View Window Module 75
Module Diagram for Master Control Window Module 76
Module Diagram for Multilayer Perceptron NN subsystem 77
The IEs Communication Model 82
Main Window Model 87
The ANNS Central Control Panel Model 87
The ANNS Environment Control Panel Model 88
The ANNS Master Control Panel Model 88
The ANNS Configuration Options Panel Model 89
The ANNSIcont 90
Algorithm Window Model90
Two Algorithm Windows Comparison Model 91
Simulation Status Window Model 92
On-line Help Window Model 93
Exit Notification Window Model 94
Main Window 106
The ANNSIcon i, 107
The ANNS Master Control Panel 109
The ANNS Configuration Control Window 110
Simulation Window 111
The ANNS Central Control Panel 111
Two Simultaneously Simulation Windows 112

Page
The ANNS Environment Control Panel 113
Exit Notification Window 114
On-line Help Window R ¥
Object Model of X Window System 124
The Idealistic Abstract Model of ANNS 126
The Architecture of ANNS at the Top Level 127
ANNS Directory Structure 131
The IEs Communication Model 133
Module Diagram for BackProp NN subsystem 143

xi

AFIT/GCE/ENG/93)

Abstract

This thesis presents an X Window based neural network simulation environ-
ment developed 2t Air Force Institute of Technology (AFIT) using the techniques of
modern software engineering . This artificial neural network simulator is a tool
running on Sun SPARCstations and supporting two user modes: end-users and
client-programmets. End-users interact with neural network paradigms developed
by client-programmers for the purpose of studying and analyzing the execution of a
particular Neural Network (NN) paradigm, or class of NN algorithms. Client pro-
grammers maintain the system and use this environment for the development of
new NN paradigms or algorithms for end-users. The development follows a hybrid
software engineering paradigm which combines the best characterislics of the clas-
sic life cycle, prototype, and iterative methodologies through requirements, design,
implementation, and testing. An object-oriented approach is used for the design
including preliminary and detailed design. The system is implemented with the C
programming language on Sun workstation and uses the XView window-based envi-
ronment. It provides users with a variety of control and input options: simulation
speed control, multiple and simultaneous NN algorithm simulations, and simulation

environment control:

xii

ANNS
An X Window Based Version
of the
AFIT Neural Network Simulator

1. Introduction

An environment to examine internal operation of neural networks as they train
could help determine the efficiency and accuracy of different topologies. Evaluation
of internal constants and variables as the network trains may offer insight into which
values may be best suited for a particular set of circumstances. In order to test and
evaluate a number of paradigms and techniques, a neural nétwork simulator with an
X window based Graphical User Interface called the AFIT Neural Network Simula-
tor (ANNS) was developed. The ANNS running on Sun SPARC workstations is a
collection of software tools and demonstrations that provide graphical displays and

allow users to interact with the network during execution of the training algorithms.

ANNS can provide a window so that the programer or user can view the dy-
namic behavior of an algorithm and its changes of learning state while the neural
network paradigms or algorithms execute. Rather than simply viewing the static
result of paradigm execution, ANNS presents paradigm execution as a series of tran
sitions. As an educational tool, ANNS can help students understand different al-
gorithms by providing a means for visualizing and interacting with algorithms as

they execute. As a research tool, ANNS is useful in the development of new neural

network paradigms; as well as the effective use of existing neural network algorithms.

1.1 Background

Many seemingly simple problems have proven intractable for ordinary com-
puters using conventional algorithms. These problems seem simple because we solve
them every day. Simple tasks like finding a light switch and turning it on would be
trivial for a person but difficult for a computer. Other examples include navigating
around a room, or selecting the best stocks and bonds to buy. Biological systems
seem to have little trouble with these types of problems. For example, a common
house fly has enough computational power in a few cells of protoplasm to fly straight
at the ceiling, flip over and land upside down attaching itself to the surface with its

little suction cup feet. Try that with a Cessna on autopilot.

Because biological systems seem so good at solving certain problems, many
researchers have suggested building computers based on biological models. The
results, for better or worse, have come to be grouped under the general heading of
artificial neural networks. A real neural network is one of those things found in all

animals for information processing,.

Neural networks may offer a new approach to many problems which have
proven intractable for many conventional algorithms. With the increased interest
in finding neural network solutions to common problems, engineers and interested
others, could benefit from a graphic software package to try out simple problems.

That was the reason NeuralGraphics was built [51].

The NeuralGraphics system was developed to illustrate how to apply neural
networks to a variety of problems. The system was initially implemented on Silicon
Graphics IRIS 3130 system and has been moved to SGI IRIS 4D workstations. The
environment includes demonstrations and applications of multi-layer feedforward
networks using backpropagation, hybrid (joint supervised/unsupervised) training
paradigms, radial basis functions, Hopfield associative memory, error surface analy-

sis and network topology analysis. The program has been used on Silicon Graphics

(%)

system at the Air Force Institute of Technology and provided as a public domain

tool for several years.

1.1.1 Artificial Perception . Artificial perception, as opposed to artificial
intelligence, is the function of converting sensor measurement into symbols used
by the intelligence system. Artificial perception allows a sensor to understand its

environment.

Target identification and classification from electronic imagery and signal in-
telligence is a difficult problem due to the vast amounts of data involved. A single
image can contain millions of bits of information, all of which need to be processed.
Processing images for pattern recognition is a threefold problem. First, the targets
must be separated from the background or segmented. Second, the data must be
reduced to a manageable size, commonly called vector quantization or feature selec-
tion. This reduction in data can be accomplished by seleciing specific features of
a pattern and using only these features for classification: Good pattern recognition
requires good features. Finally, the vectors must be classified. In most cases, the

final classification is the easiest part of a pattern recognition problem.

Determining which features of an image form the best description of an object
is a difficult problem. In addition to selecting the best features, the data must

sometimes undergo significant preprocessing.

Success of a particular classification problem depends on a number of factors.
First, consider the validity of the segmentation of the data. Has the actual target
been separated from the background data and noise ? Is the feature extraction
legitimate ? Do the features selected for the input vector represent a good description
of the target 7 Once the target has been extracted from the background, is the vector
quantized description unique enough to allow classification ? Finally, is the neural
network topology sufficient for the size of the decision region and can it accurately

classify input pattern ? Special tools may be need to answer these questions.

1.2 Problem

The original intent for NeuralGraphics running on Silicon Graphics IRIS work-
stations was to provide a platform for neural network research. This never really
transpired, for several reasons. First and foremost was a lack of available worksta-
tions. This problem has so far been addressed by using Sun Spatc stations, which are
commonly used by the general AFIT engineering student body. Since these worksta-
tions run Openwindows (an X Window System-based graphical user interface), new
students are indoctrinated into the Openwindows environment, and are therefore

unfamiliar with Silicon Graphics system.

In the real world of AFIT neural network environment, there is no unified and
iritegrated ANNS available for the end-users and client-programmers. End-users
interact with neural network paradigms developed by client-programmers for the
purpose of studying and analyzing the execution of a particular Neural Network
(NN) paradigm, or class of NN algorithms. Client programmers maintain the ANNS
system and use this environment for the development of new NN paradigms or algo-
tithms for end-users. NeuralGraphics was originally implemented using the graphics
library (GL) that comes with Silicon Graphics system and only supported a limited
number of neural network paradigms. For future development of neural network
paradigms, it will be difficult to integrate all new algorithms into a single simulator

environment for client-programmers.

1.3 Research Objectives

This thesis effort resulted in the development of an X window based Graphical
User Interface and integrated environment for controlling, displaying, and interacting
with the neural network algorithms for ANNS on Sun Sparc stations. This dual

purpose reflects the needs of two types of users: “client-programmers” and “end-

users”,

Client-programmers are con¢erned with implementing the neural network paradigm

or algorithm simulation with which end-users interact. With respect to client-
programmers, the goal of this study is to create a program development wkich
provides a consistent interface to the Neural network Simulator system and sup-
ports reusable software modules. The programmers should not have to reimplement
modules common to several paradigms or algorithms, such as window m«nagement,

user-interface, and display functions.

End-users view and interact with the simulations at a computer workstation.
With respect to end-users, the goal of this investigation is to provide an neural net-
work algorithm simulation run-time environment which provides a consistent method
for interacting with the simulations. After simulating one neural network paradigm
or algorithm, end:users should be able to simulate any neural network paradigm
or algorithm, regardless of the type of algorithm or the client-programmer of the

simulation.

In general, this investigation pursues the dual-interface approach. Develop a
system through which a user can select, execute; and control individual simulations,
each of which is a separate executable procedure. The client-programmer develops
the executable procedures with the help of a library of neural network algorithm
simulator support functions. The goal is to develop an X window based neural net-
work simulation environment which presents an easy-to-use, functional interface to
end-users, and provides an effective means for managing neural n=twork simulations

within the simulation environment for client-programmers.

1.4 Assumptions

The research and development efforts in this thesis were based on the following

assumptions:

1. The code developed by Capt. Gregory L. Tarr correctly presents and displays

the neural network paradigms and algorithms. [51]

1.5

o

The X window based Graphical User Interface is to be developed on Sun Sparc
workstations using XView (X Window-System-based Visual/Integrated Envi-

ronment for Workstations).

The C programming language is to be used for implementation.

. This thesis effort does not include conducting any sensitivity analysis or vali-

dation and verification of any neural network paradigms or algorithms.

. Since AFIT seems to have selected the Sun Sparc station platform as the

engineering workstation standard, and since the user community will most
likely remain AFIT for the foreseeable future, then portability is not a major

issue at this time.

Approach

The basic approach to this thesis effort consists of the following steps:

. Step 1 is a requirements analysis, including a review of current literature, such

as conducting research in the areas of the Object-Oriented Design, Graphical
User Interface, the X Window System and the NeuralGraphics status. Properly
understanding these areas is essential in accomplishing the thesis effort. This

is presented in Chapter I1.

Step 2 is an analysis of NeuralGraphics to determine what steps can be taken to
simplify the use of ANNS before the X window based Graphical User Interface
(GUI) replacement phase begins. This is presented in Chapter III.

. Step 3 is a development of a preliminary object-oriented design: The design in-

cludes the relationships among objects as well as their attributes and methods.

This is also presented in Chapter II1.

. Step 4 is a development of detailed objected-oriented designs based on step 3.

This is presented in Chapter IV,

o

Step 5 is an implementation stage, including a rewrite of the NeuralGraphics

system Graphical User Interface based on Silicon Graphics GL library. Step 5

starts with a detailed discussion outlining the motivations for choosing XView
and an analysis of currently available graphics libraries and their attractiveness

to ANNS. These are presented in Chapter IV.

1.6 Summary

Autonomous military target detection and classification from electronic im-
agery is a topic of great importance to the Department of Defense of the United
States. The solution to the problem may lie in one of several implementations of ar-
tificial neural networks. Several topologies for neural networks have been proposed,
each of which provide a solution for a narrow class of pattern recognition problems.
Some researchers (Huang and Lippmann) [11] feel that combinations of more than
one type of neural network may result in a more dynamic and robust system. The

goal of this thesis is to develop this kind of system called ANNS, an X window based

Artificial neural network simulator.

The next chapter consists of a literature review of object-oriented design meth-

ods, Graphical User Interface; X window systems and NeuralGraphics status.

Chapter I1I describes the object oriented approach used for the requirements

analysis and the initial design of the X windows based ANNS user environment.
Chapter IV provides the design and implementation of ANNS.
Chapter V presents the conclusions and recommendations.

In Appendix A, the ANNS User’s Manual describes how to use the AFIT
Neural Network Simulator system. Appendix B is the ANNS Programer’s Guide :
it describes the ANNS system and presents a procedure for creating new paradigms
and algorithms. Appendix C is ANNS User Evaluation Form which is a sample of

the standard form used by the Department of Electrical and Computer Engineering

at AFIT to evaluate sofuware systems. Appendix D includes the source codes of the

ANNS system.

II. Literature Review
2.1 Introduction

The purpose of this chapter is to review some of the literature on object-
oriented design, Graphical User Interface, X Window System, and the NeuralGraph-
ics status. First, object-oriented design concepts are discussed, including the steps
involved in conducting an object-oriented design as described by various authors.

Advantages and strong points of object-oriented design are also discussed.

Secondly, the graphical user interface design concepts are also discussed. In
order to begin developing a graphical user interface, we need to understand the user’s
requirements and the role the user interface is to serve in fulfilling those requirements.
Once the “big picture” has been grasped, it is imperative that the user interface
designer have some understanding of the factors involved in creating a satisfactory
user interface. The last step in user interface development is to decide upon and
master a computer language or system that can be used to effectively implement the

design. Therefore, the basic concepts of the X Window System are described.

The X Window System is an industry-standard software system that allows
programmers to develop portable graphical user interfaces. X allows programs to
display windows containing text and graphics on any hardware that supports the X

protocol without modifying, recompiling, or relinking the application.

Finally; the current status of the NeuralGraphics software package is discussed,

including the basic structures and software design.

2.2 Object-Oriented Design

Object-oric 1ted design (OOD) is based on a decomposition of the system into
objects. This differs from functional decomposition techniques where the decompo-

sition is based on functions. Each module in an object-oriented design is based on

an object whereas; in the functional decomposition, the modules are based on steps
in the overall system process [2:211]. “Object-oriented design is a design method
which is based on information hiding” {42:204]. Korson and McGregor state that

“the object-oriented design paradigm takes a modeling point of view” [18:46].

2.2.1 Object-Oriented Design Concepts. Korson and McGregor describe
five concepts in object-orie.ited methods. These concepts, which are described in the

following section, are: “objects, classes, inheritance, polymorphism, and dynamic
g)

binding” [18:42].

2.2.1.1 Object. Booch defines an object as “something you can do
things to. An object has state, behavior, and identity: the structure and behavior of
similar objects are defined in their common class. The terms instance and object are
interchangeable” [5:516]. The behavior of an object is “characterized by the actions
that it suffers and that it requires of other objects” [2:211]. “The intent of an object
is to represent a problem domain entity” [42:4-57). For example, the coordinate
of a point on a workstation screen is (20, 20) . This point can be defined as an
single object with display operation on it. Since there are many points with different
coordinates on the screen and each of them is a individual object, the point can be

defined as an object class as shown in figure 1.

Objects use memory and have an associated address. Associated with an object
are procedures and functions which define the operations on the objects. [18:42]
“Objects communicate by passing messages to each other and these messages initiate

object operations” [42:204]. Communication may be asynchronous. OOD is an

excellent method to use in designing parallel cr sequential programs. [42:204]

2.2.1.2 Class. A class is “a set of objects that share a common
structure and a common behavior. The terms class and type are usually (but not

always) interchangeable; a class is a slightly different concept than a type, in that it

10

|

émphasizes the importance of hierarchies of classes” [5:513]. “From the point of view

of a strongly typed language, a class is a construct for implementing a user-defined

type” [18:42]. For example, Line, Arc, Polygon, and Circle are object classes in

figure 1.

___Figure

color .
center position

pen thickness
pentype
select
rotate _display

move

r

__ODimension _

display

_ [—

{ A
1 Dimension

orientation

Arc

Spline

fadius
start angle
_ arcangle

control points

r

N

display

\..

L -

display

2 Dimension
orientation
_ filltype _ .
scale
Loy
(— — - N 7 —m - —_ - “1
Polygon Circle
numm of sides
vertices diameter
- displa
| disptay | | romte |

Figure 1. Inheritance for graphic figures

Object-oriented techniques use an Abstract Data Type (ADT) to represent a

class of objects: According to Booch, an ADT “denotes a class of objects whose

behavior is defined by a set of values and a set of operations, including constructors;

selectors, and iterators” [3:216]. “Ideally; a class is an implementation of an ADT.

This means that the implementation details of the class are private to the class”

[18:42].

11

2.2.1.3 Inheritance . “Inheritance is a relation between classes that
allows for the definition and implementation of one class to be based on that of
other existing classes” [18:43]. “Inheritance defines a ‘kind of’ hierarchy among
classes in which a subclass inherits from one or more superclasses; a subclass typically
augments or redefines the existing structure and behavior of its superclasses” [2:154).

Korson and McGregor state that the inheritance relation often denotes an “is a ”

relation. Inheritance supports reuse of software components. [18:43-44] Figure 1

shows classes of graphic geometric figures. Figure object class has 0 Dimensional,
1 Dimensionel, and 2 Dimensional figures. Move, select, rotate, and display are
operations inherited by all subclasses. Scale applies te one- and two-dimensional

figures. Fill applies only to two-dimensional figures.

2.2.1.4 Polymoiphism. Polymorphism is defined as “a concept
in type theory; according to which a name (such as a variable declaration) may
denote objects of many different classes that are related by some common superclass;
thus, any object denoted by this name is able to respond to some common set of
operations in different ways” [5:517]. In other words, this means that polymorphism
is a technique in which an object can have more than one form. “A polymorphic
reference has both a dynamic and a static type associated with it. The ‘is a’ nature
of inheritance is tightly coupled with the idea of polymorphism in a strongly typed
object-oriented language” [18:45]. The same operation may apply to many different
classes. Such an operation is polymorphic; that is, the same operation takes on
different forms in different classes. A method is the implementation of an operation
for a class. For example, the class File may have an operation print. Different
methods could be implemented to print ASCII files, print binary files, and print
digitized picture files. All these methods logically perform the same task-printing a
file.

12

2.2.1.5 Dynamic Binding. Booch defines dynamic binding as “a
binding in which the name/class association is not made until the object designated
by the name is created (at execution time)” [5:513]. Binding, as defined by Booch,
“denotes the association of a name (such as a variable declaration) with a class”
[5:513]. Korson and McGregor state that dynamic binding “means the code asso-
ciated with a given procedure call is not known until the moment of the call at
runtime” [18:46]. Dynamic binding “is associated with inheritance and polymor-
phism in that a procedure call associated with a polymorphic reference may depend

on the dynamic type of that reference” [18:46).

2.2.2 A Sample Object Model. This section provides an object model
(associated with ANNS system design) of a workstation window management system,
such as the X Window System, as an example to illustrate the concepts of object-
oriented design. Figure 2 describes many object modeling constructs and shows

how they fit together into a large model.

Class Window defines common parameters of all kinds of windows, including
a rectangular boundary defined by the attributes z1, yI, 2, y2, and operations to
display and undisplay a window and to raise it to the top (foreground) or lower it
to the bottom (background) of the entire set of windows. Panel, Canvas, and Text
window are varieties of windows. A canvas is a region for drawing graphics. It inherits
the window boundary from Window and adds the dimensions of the underlying
canvas region defined by attributes czl, cyl, cz2, cy2. A canvas contains a set of
elements, shown by the association to class Shape. All shapes have color and line
width. Shapes can be lines, ellipses, or polygons, each with their own parameters.
A polygon consists of an ordered list of vertices; shown as an aggregation of many
points. Ellipses and polygons are both closed shapes, which have a fill color and a
fill pattern. Lines are one-dimensional and cannot be filled. Canvas windows have

operations to add elements and to delete elements.

13

D ———

Window

xhyl x2,2

display
undisplay
raise

lower

- .
Scrolling
__window___

x-0fTset
Yy-offset

_._scrold

~

J R

Text
window

Scrolling

canvas

P _

__ Canvas

al

a2 ¢y2

cyl

_ Sha

elements
——

pe

color

line width

[Closed)
_ shape _

fill color
fill pattern _

\ o

Button

. .

string
__ depressed

Figure 2. Object Model of Windowing System

14

Choice
_item

Text item

current
choice

max length
_curTent string

choices

Text window is a kind of a Scrolling window, which has a 2-dimensional scrolling
offset within its window, as specified by z-offset and y-offset, as well as an operation
scroll to change the scroll value. A text window contains a string, and has operations
to insert and delete characters. Scrolling canvas is a special kind of canvas that
supports scrolling; it is both a Canvas and a Scrolling window. This is an example

of multiple inheritance.

A Panel contains a set of Panel item objects, each identified by a unique item
name within a given panel, as shown by the qualified association. Each panel item
belongs to a single panel. A panel item is a predefined icon with which a user can
interact on the screen. Panel items come in three kinds: buttons, choice items, and
text items. A button has a string which appears on the screen; a button can be
pushed by the user and has an attribute depressed. A choice item allows the user to
select one of a set of predefined choices, each of which is Choice entry containing a

string to be displayed and a value to be returned if the entry is selected.

When a panel item is selected by the user, it generates an Event, which is a
signal that something has happened together with an action to be performed. All
kinds of panel items have notify event associations. Each panel item has a single
event, but one event can be shared among many panel items. Text items have a
second kind of event, which is generated when a keyboard character is typed while
the text item is selected. Association keyboard cvent shows these events. Text items
also inherit the notify event from superclass Panel item; the notify event is gencrated

when the entire text item is selected with a mouse.

2.2.3 Object-Oriented Design Process. Different authors describe differ-
ent steps to use in conducting an object-oriented design. What one author calls an
object-oriented design, another author calls object-oriented development or require-

ments analysis. Since many authors use a modified version of Booch’s object-oriented

design process, his steps will be discussed in a later section of this chapter. This

section discusses a method described by Henderson-Sellers and Edwards which they

call an object-oriented development methodology.

Henderson-Sellers and Edwards describe seven steps used by Bailin in his
object-oriented requirements specification method. They state that these steps
could “obviously transcend the requirements stage well into detailed design” [10:148].

Bailin’s seven steps, as described by Henderson-Sellers and Edwards, are [10:148-149):

1. identification of key problem space objects,

o

distinguish between active and passive objects,
3. establish data flows between active objects,
4. decomposition of objects into “sub-objects”,

. check for new objects,

<

6. group functions under new objects,

-3

assign new objects to appropriate domains.

According to Henderson-Sellers and Edwards, Bailin sees the first three steps
as ones which are accomplished only once, while the other steps are performed it-
eratively. Henderson-Sellers and Edwards propose a “seven-point methodological
framework for object-oriented systems development™ [10:149]. The steps, and a de-

scription of each follow [10:140-150}:

1. Undertake object-oriented systems requirements specification. “This stage is
high-level analysis of the system in terms of objects and their services, as

opposed to the system functions” [10:149)].

%

Identify the objects and the services cach can provide. This equates to the enti-
ties and their interfaces. “This is where the functional features will be defined;
although no indication of implementation is required” [10:150]. Henderson-

Sellers and Ldwards propose that an object dictionary be established. The

visible interface is defined by identifying the objects; and the operations on

the objects, as well as the services offered:

3. Establish interactions between objects in terms of services required and ser-
vices rendered. Henderson-Sellers and Edwards suggest that an entity-data
flow diagram (EDFD) or entity-relationship diagram (ERD) be used for this
step. They suggest that a better name for this diagram is an information flow

diagram (IFD).

4. Use of lower-level II'Ds. This is where analysis and design merge. The lower-
level IFDs show “more internal details of the objects” [10:150]. From this step

on, bottom-up concerns should be analyzed.

ot

Bottom-up concerns. During this step, objects are constructed from libraries

of previously used objects. Implementation of low-level classes begins.

6. Introduce hierarchical inheritance relationships as required. This step involves
determining whether there are any superclasses or new subclasses. Henderson-
Sellers and Edwards propose the use of an inheritance diagram to show the
inheritance relationships. They state that this step is nceded to provide a

well-defined hierarchy so that {uture efforts can reuse the resulting structure.

=1

Aggregation and/or generalization of classes. This step might require reviewing
and modifying the IFDs. Prototyping might begin at this stage. The identified
system classes can undergo another stage of development which Henderson-
Sellers and Edwards call generalization. “At this stage the components con-
tinue to be worked on until they are general, generic, and robust cnough to be

placed in a library of components™ [10:150].

2.2.4 Booch’s Object-Oriented Design Process. This section describes the

five steps of Booch’s design process as describe in his book, Softwarc Componcnts

17

with Ada '[3]). Since other authors use very similar steps, it includes information

from various authors.

2.2.4.1 Identify the Objects and Their Attributes. This step involves
taking a narrative requirements document and extracting the nouns, pronouns, and

noun phrases (3, 6, 13]. Some objects may be similar to the other objects.

In this case, a class of objects is formed [4:48]. Once all the objects and classes
are identified, a decision must be made as to whether they will be kept or discarded
[13:44]. Just because an object is identified from the requirements document does

not mean that it should become part of the design and implementation [13:44].

Once the list of objects is refined, then the attributes of the objects should be
determined. “The attributes of an objected characterize its time and space behavior”
[3:17]. Jean and Strohmeier state that “these properties are given by the qualifiers of
the objects and classes within the informal strategy and by the additional information
found in the requirements analysis document” [13:44]. EVB Software Engineering,

Inc. states that these are the “adjectives and adjectival phrases” [3:2-8].

2.2.4.2 Identify the Operations Suffered By and Required of Each Ob-
Jject., In this step, the requirements document is used to extract verbs, verb
phrases, and predicates [6, 13]. Then, the extracted verbs. verb phrases, and predi-
cates are associated with a particular object [6, 13]. Jean and Strohmeier say “The
goal is to bind each operation to a single object or a singie class” and that “no

operation should be left alone” [13:45].

“The operations suffered by an object define the object’s activity when acted
upon by other objects™. By defining the operations required by an object. an attempt

is made to decouple objects from one another. [3:17]

'Since Xlib and Xt of X window system are written in C language. We need to translate the
00D concepts of Ada implemnentation to the C language implementation.

During this step, a determination should be made as to whether the operation
is a selector, a constructor, or an iterator [13:45]. A selector evaluates the current
object state; a constructor alters the state of an object; an iterator permits all parts

of an object to be visited [13:20].

2.2.4.3 Establish the Visibility of Each Object in Relation to Other Ob-
jects. As part of this step, a decision is made as to what objects “see” and are
“seen” by other objects [4:49]. The dependencies among objects should be estab-
lished [2:219]. This can be done diagrammatically by drawing each object and then

connecting the objects with a line to show the visibility between the objects [3:28].

EVB divides Booch’s step into four substeps. The first substep is to decide on
how to implement the operations. Subprograms, packages, tasks, and generics are the
program units used to implement an object. The second substep formally describes
the interfaces among the objects. These descriptions can be textual or graphical. A
program unit which depends on another program unit must be compiled after the
first program. This substep helps determine the compilation order. EVB’s third
substep is to create any additional objects and operations which are needed to help
the implementation stratcgy. These items are ones that were not identified as part
of the informal strategy bul must be visible outside of the program unit. The last
substep is to produce graphical annotations to represent the formal strategy. The
diagrams give no indication as to how an object should be implemented not do they
show much about the underlying implementation of the operations. The diagrams
serve as a map for the software engineer to follow throughout the rest of the design

process. [6].

2.2.4.4 [Eslablish the Interface of FFach Object. This step is accom-
plished by writing a module specification for cach object. Booch states that “this
specification also serves as a contract between the clients of an object and the object

itself”. [3:18]

19

2.2.4.5 Implement Each Object. This “involves choosing a suitable
representation for each object or class of objects and implementing the interface

from the previous step” [3:18]. An object is implemented in C “as a structure set of

procedures and internal data” [35:342].

2.2.5 Advantages and Strong Points of Object-Oriented Design. Som-

merville describes the following advantages to OOD [42:205):

o Message passing eliminates the need for shared data areas for communication

between objects. Overall system coupling is thus reduced.

o All state and representation information is kept within the object itself, making
the object an independent entity that may be readily changed. Objects can not
access information on other objects either deliberately or accidentally. Changes

may be made without. reference to other system objects.

e Objects may execute cither in parallel or sequentially. They may also be dis-
tributed. The decision as to whether parallelism should be used does not need

to be made at an early stage of the design process.

Korson and McGregor describe seven ways in which object-oriented design

provides support for a good design.

1. Modularity. Classes become the modules. “This means that not only does the
design process support modularity, but the implementation process supports

it as well through the class definition”. [18:50]

o

Information Hiding. “The class construct supports information hiding through
the separation of the class interface and the class implementation™ [18:51]. This
scparation permits the class specification to be mapped to various implemen-
tation and means some maintenance can be accomplished without the user’s

knowledge {18:51].

w

Weak Coupling. Object-oriented design supports weak coupling |18:51]. Since
classes are designed as a collection of objects and the operations on those
objects, the “interface operators of a class are inward-looking in the sense that

they are intended to access or modify the internal data of the class” [18:51].

This leads to less coupling which is desirable.

S,

. Strong Cohesion. Strong cohesion is desirable and supported by object-oriented
design. Korson and McGregor state that “a class is a naturally cohesive module
because it is a model of some entity” [18:51]. Functional cohesion is desirable
form of cohesion. Booch defines it as cohesion “in which the elements of a
class or module all work together to provide some well-bounded behavior”
[5:124]. OOD supports functional cohesion. The fact that OOD makes use of
inheritance does not mean that the cohesion is weakened since both the data
and functions which are inherited from another class form a natural group

[18:51]. These natural groups are “brought together to represent one concept”

[18:51).

&3]

Abstraction. Object-oriented design supports abstraction. Booch defines ab-
straction as “the essential characteristics of an object that, distinguish it from
all other kinds of objects and thus provide crisply-defined conceptual bound-
aries relative to the perspective of the viewer” [5:512]. Korson and McGregor
discuss two types of abstraction which support OOD: abstraction by specifica-
tion and abstraction by parameterization [18:51-52]. Abstraction by specifica-
tion separates the specification of an object from its implementation [18:52].
“Abstraction by parameterization abstracts the type of data to be manipu-
lated from the specification of how it is to be manipulated™ [18:532]. Seidewitz
and Stark state that there is a “spectrum of abstraction™ including entity, ac-
tion, virtval machine, and coincidental abstraction, which in conjunction with

information hiding, provide the main guidance for defining objects [38:4-57].

Entity abstraction. which is the best level. is where an object “represents a use-

ful model of a problem domain entity” [38:4:57). Action abstraction is where
“an object provides a generalized set of operations which all perform the same
kind of function” [38:4-57]. Seidewitz and Stark describe virtual machine ab-
straction as the case in which “an object groups together operations which are
all used by some superior level of control or all use some junior level set of
operations” [38:4-57]. The worse level of abstraction is the coincidental. This
level of abstraction is defined as where “an object packages a set of operations

which have no relation to each other” [38:4-57].

6. Extensibility Object-oriented methods are “easily extended” [18:52). Inheri-
tance supports this in two ways. First, because inheritance permits “the reuse
of existing definitions to ease the development of new definition” [18:52]. Sec-

ond, the polymorphir property also supports extensibility in designs [18:52].

-1

. Integruble. Designs produced by OOD “facilitate the integration of individual
pieces into complete designs” [18:52]. This includes both the use of classes and

objects [18:52].

Booch discusses coupling, cohesion, sufficiency, completeness, and primitive-
ness as means of delermining that a design is good. Coupling and cohesion were
discussed above. By sufficiency, Booch “means that the class or module captures
enough characteristics of the abstraction to permit meaningful and efficient interac-
tion” [5:124]. Completeness means “that the interface of the class or module captures
all of the meaningful characteristics of the abstraction” [5:124-125]. Completeness
is a subjective matter and should not be overdone. Primiliveness implies that an
operation can be implemented if the developer is given access to the underlying

representation of the ADT. [5:124-125]

2.2.6 Object-Oriented Design and Simulation . “The object-oriented design
of simulations is based on the concept of abstract data types” [55:123]. Object-

oriented techniques lend themselves to simulation because the “things™ which should

be modelled are objects and what cach of the “things” can do are the operations on
the objects [31:‘278]., This defines an abstract data type. Roberts and Heim state
that an “object-oriented design attempts to bridge the gap between the model and
what is modcled” [31:278]. They also state that “division into classes, recognition
of methods, and the organizations of hierarchies from the basic approach to object-

oriented modeling” [31:279]. Methods are the operations performed on an object.

One benefit of an object-oriented simulation system is the focus on objects.
Focusing on objects provides both data abstraction and information hiding which
help to modularize the system. This “stimulates the user to identify the principal

components of a system and to specify their behaviors and interactions”. [31:279)

Another benefit of an object-oriented simulation is that existing models can
form the basis for new models. By using overloading and inheritance, old objects

can take on new meanings. [31:280]

The resulting amount of codc generated using object-oriented simulations is
less ihan using traditional approaches. This makes it easer to manage the model

and also permits models to be larger and more realistic. [31:280]

Objects provide a natural starting point for concurrency [31:280]. Concurrency
permits more than one object to be processing at the same time as long as the objects

do not need to communicate with each other.

2.3 Graphical User Interfaces

The user interface is the component of the application through which the user’s
actions are translated into one or more requests for services of the applications, and
that provides feedback concerning the ontcome of the requested action [25]. The

design of efficient and easy to use interfaces is receiving increased attention these

days. Most people now realize that if an application has a user interface that is

“unfriendly” or difficult to use. it is probably going to sit on the shell unused.

2.8.1 User Interface Design. While much has been written recently
on the subject of user interface design, it is hard to define exactly what is meant
by a “good” user interface. Often, the closest one can come to a definition is an
enumeration of qualities a user interface should have. Accordingly, it is not easy to
design a user interface. Brad Myers describes user interface design as more of an

art than a science. However, he does list some things to consider when producing a

design [24]:

o Learn the application. In order to determine what data to display and how best
to display it, the designer must have a good understanding of the functionality
of the system. This is often one of the most significant steps in interface design

as a poor undetstanding can be difficult to overcome once the design progresses.

o Learn the user. The designer must determine the skill levels of the intended

users, their backgrounds, and the amount of training likely to be needed.

o Learn the hardware and environmental constraints. Is the system going to be
run on a particular type of machine ? Will special input or output devices,

such as mice, terminals, or plotters, be used ?

o Evaluate similar products. The designer should study the user interface of

similar systems and of systems in the same environment.

o Determine the support tools. There are many toolkits available to assist in
the design and implementation of user interfaces. Also; user interface man-
agement systems (UIMS) are becoming more popular as a means of increasing

productivity in the user interface design.

o Plan to incorporate Reset, Quit, and Help from the beginning. 1t is very difficult
to try to add these functions after the system is under development. The nature

of the actions impacts the design of the application’s data structures.

24

o Separate the user interface from the application. The user interface and the
application should be modularized with design of the former being based on

the functionality of the latter.

e Design for clangz. The user interface will change more than the functionality
of the application. These changes frequently will be based on customer reaction

to the delivered system.

Two of the items in the above list deserve a broader discussion. These are the
support tools and the separation of the application from the interface. As previously
mentioned, the two major types of tool for user interface design are toolkits and
user interface management systems (UIMS). One problem with toolkits is that it is
often difficult to determine what part of the toolkit to use to perform a particular
function. Furthermore, since the work must be done over and over with each new
application, consistency between systems is in jeopardy [17]. UIMS, on the other
hand, are designed to aid in “rapid development, tailoring and management of the
interaction in an application domain across varying devices, interaction techniques
and user interface styles” [20:33]. This may include such things as handling user

efrors, providing helps and prompts, and validating users inputs.

Separating the user interface software from the application software has many
attractive benefits. Typical user interface design consists of one or more prototypes
offered to the user for review. The user then evaluates the interface and offers
suggestions for improvement. If the application and user are closely interwoven the
user interface designer may have difficult making the suggested improvements. The
job can be much easier, however, if the functionality of the application is separated
from the user interface. Pedro Szekely lists the following benefits of minimizing

dependencies between the application and the interface [50:45):

o The user interface can be packaged into components that can be reused in

other interfaces.

o The user interface can be changed without impacting the functionality:

® Multiple user interface can be developed for a single application, each one
tailored to a different class of users, or to a different set of input and output

devices:

¢ The functionality of an application can be called from another program directly,

without simulating the input required by the user interface.

o The user interface can be specified by means other than programming, for
example, by interactively drawing and demonstrating how thé interface should

behave:

2.3.2 User Interface Characteristics. Whatevet design method is used,
effective user interfaces frequently have certain qualities. Brad Myers lists the fol-

lowing attributes of so-called “good” user interface [23]:

o [nvisibility: The user interface should be transparent to the user, such that the
user has the sense that he is directly manipulating “real” objects on the screen.
The user interface should not interface with the operator’s concentration on

the task being performed.

o Minimal training requirements: No more than one hour of training should be

necessary before the user can be productive on the system.

o High transfer of training: The system's appearance and performance should be
similar to other systems dealing with the same subject matter. This external
consistency between systems will help reduce training times when switching

from system to system.

o Predictability: The objects and operations should perform similarly across con-
texts of the system. This internal consistency leads to a system where user can

anticipate how the computer will behave.

26

e It is flexible: The user interface should allow user to operate in the manner
with which they are most comfortable. Users should be able to customize

certain attribites to their own style and taste.

2.3.3 User Guidance . User guidance refers to system documentation,
the on-line help system, and messages sent as a result of user actions. This is an
area that does not always receive the attention it deserves. However, it should be
considered at every stage of interface design because of the significant contributions

it can make to effective system operation [41]. According to Smith and Mosier,

The fundamental objectives of user guidance are to promote efficient

system use (i.e:; quick and accurate use of full capabilities); with minimal

time required to learn system use; and with flexibility for supporting users

of different skill levels. [41:291]

Often, the first impression a user gets of a system is from error messages [42).
Thus, the interface designer should make an effort to write error messages that
are both polite and constructive without being offensive. When possible, the error
message should suggest how the user might recover from the error. Also, the user
should have the option of getting a help message to give insight as to the cause of

the error.

It is difficult for an interface designer to anticipate the level of help users will
need: To accommodate all types of users, the help system should provide different
levels of help. When the user first requests help, the system should provide a brief
overview of the topic and give the user capability to request a continuation of the

help. Each successive level of help would give greater detail on the subject [54].

2.4 The X Window System

User interfaces using some type of windowing system are fast becoming a com-
mon feature of most computer systems. As a result, users tend to expect all appli-

cation programs to have a professional, polished user-friendly interface. [59] The X

Window System provides the mechanism to achieve this goal as well as many others

described in the previous section.

The X Window System, or X, is a device independent, network iransparent
windowing system that allows for the development of portable Graphical User Inter-
faces (GUls) [28, 37, 27]. It was developed in the mid 1980°s at the Massachusetts
Institute of Technology (MIT) in response to a necd to execute graphical software on
several different types of different workstations. Robert Scheifier of MIT and James
Gettys of Digital Equipment Corporation (DEC) developed X with the primary goals
of portability and extensibility [37]. Another major consideration was to restrict the
applications developer as little as possible. As a result, X “...provides mechanism

rather than policy”[14:xvii].

To achieve the goals, the X Window System relies on the fundamental principles
of network transparency and a request/event system. Software toolkits are then

layered on top of the basic system to provide an easier programming environment.
2.4.1 X Window System Principles .

2.4.1.1 Network Transparency . Oliver Jones describes network
transparency as the capability for X application programs running on one CPU
to show their output and receive their input “..using a display connected to ei-
ther the same cpu, or some other cpu”[15:4]. The X Window System achieves this
transparency using a client-server model. In X, each workstation that is to display
graphical information(i.e.,windows or their contents) must have a process called the
X server. According to Douglas Young, the X server “...creates and manipulales
windows on the screen, produces test and graphics. and handles input devices such

as a keyboard and mouse” [59:2].

The core of the X system is the server. The server allocates and manages

all the necessary data structures required to support a screen. There is one server

per cpu, but a server can manage more than one screen (aunalogous to a file server
with diskless clients). Applications programs using the server are known as clients.
Any application which complies with the X protocol (an asynchronous byte-stream
protocol) can communicate with the server. Obviously, a server can connect to many
clients, but a client can also connect to more than one server. A client and server

need not be on the same machine, or even the same network.

The server provides the device independent interface to the platform on which
it resides. A specific version of the server must be installed for each platform. For
example, in a networked workstation environment, each workstation has a device

dependent server running in the background controlling the screen.

Clients and servers use the X protocol to communicate with cach other over a
network. As figure 3 shows, many clients can connect to a single server. Although
not shown, a client can also be simultancously connected to several X servers. In X.
the client(s) and server can reside on the same physical machine, or they may be on

the separate machines.

2.4.1.2 Requests and Events. The network protocol mentioned in
the last section is the method with which clients and servers communicate. This
section discusses the mechanisms used Lo carry out the communication. The clients
and servers communicate with each other by sending requests and event notifications,

respectively.

When a client wants to perform some action on the display. it communicates

this desire by issuing a request to the appropriate X server. Young states:

Clients typically request the server to create, destroy, or reconfigure win-
dows. or to display text or graphics in a window. Clients can also request,
information 2bout the current states of windows or other resources. [39:1]

The X server, conversely. communicates with the clients by issuing event no-

tifications. Event notifications are sent in response to such user action as moving a

Cliént Client Client

Network

X Server

/ Keyboard / Terminal Mouse

Figure 3. The X Client-Server Model

mousc into a window, by pressing a mouse button. or pressing a key on the keyboard.
The X server also sends event notifications when the state of a window changes [27].
Applications programs act on these events by registering callbacks with the X Win-
dow System. A callback is simply a procedure or function that is to be executed

when a specific event occurs.

Because of the reliability of the network, events and requests are sent asyn-
chronously and data can be sent in both directions simultaneously [36]. This con-
figuration makes for faster communication since the clients can send requests at any
time and need not wait for an acknowledgement. The protocol guarantees the mes-
sages will be received in the proper order. FFurthermore. there is no need for clients to
continuously poll the server for information. “Instead. clients use requests to register
interest in various events. and the server sends event notifications asynchronously™

[36:xviii].

30

2.4.1.3 Basic Components. The X Window System was designed
to provide the mechanism for the application program to control what is scen on
the display screen. The programmer is not constrained by any particular policy.
These mechanisms are embodied in a library of C' functions known as Xlib. The
Xlib routines allow for client control over the display, windows, and input devices.
Additionally, the functions provide the capability for clients to design such things as
menu, scroll bars. and dialogue boxes. Most X application programs make use of a
special client program called window manager. The program utilizes the mechanisms
of Xlib to relieve the application program of such tasks as moving or resizing windows
[36]. Brad Myers writes that a window manager helps the user monitor and control
different activities by physically separating them into windows on the computer

screen [22].

Figure 1 represents the most basic X environment. In this diagram, an ap-
plication program and a window manager operate as separate clients connected to a

single server.

2.4.2 Toolkils. While application programmers can use the Xlib routines
to accomplish any task in X. many find the low-level routines tedious and difficult
to use. To simplily the development of applications programs, many toolkits have
been developed. Toolkits can be viewed as libraries of graphical programs layered
on top of Xlib. They were designed to hide the details of Xlib, making it casier to
develop X applications. [26]

There are several toolkits available today. Some of the better known ones
include: the X Toolkit (Xt) from MI'T, the Xlib Toolkit (Xr) from Hewlett-Packard
(HP). Open Look and XView from Sun Microsystems. and Andrew from Carnegie
Mellon University. Of those listed, Xt is one of the most popular [30]. Along with

Xlib. it is delivered as a standard part of the X window System.

31

Client Client. _

Application Window
Program Manager
Xlib Xlib
Network

X Server

/ Keyboard / Terminal Mouse

Figure 4. Basic X Environment

Xt is an objected-oriented toolkit used to build the higher level components
that make up the user interface [30]. It consists of a layer called the Xt Intrinsics
along with a collection of user interface components called widgets. Widget sets
typically consist of objects such as scroll bars. title bars, menus, dialoguc boxes and
buttons. In keeping with the X philosophy, the Xt Intrinsics layer remains policy
free. As such, it only provides mechanisms that do not affect the “look and feel”
(outward appearance and behavior) of the user interface [59]. These mechanisms
allow for the creation and management of reusable widgets. It is this extensibility
along with its object-oriented design that makes the X Toolkit attractive to user

interface designers.

It is the programmer’s choice of a widget set that determines the high-level

“look and feel™ of the user interface. Just as there is no “standard” toolkit, there are

many different widget sets supported by Xt Intrinsics. However. as Young writes,

Application Program (C Language)

Widget Toolkit (Motif, etc.)
%C Routines) =~ 7

Xt Intrinsics (C Routines)

Xlib (C Routines)

X Server

/ Keyboard / Terminal Mouse

Figure 5. Typical X Windows Configuration

“...from an application programmer’s viewpoint, most widget sets provide similar
capabilities™ [27:12]. Some of the more popular widget sets include the Athena
widget set from MIT. the X widget set from HP, and the Motif widgets from the

Open Software Foundation.

Structuralty. the Xt Intrinsics is built on top of Xlib. The XView widget set,
in tura, relies on the function. provided by the Xt Intrinsics. A typical application
program may make calls to the widget set. the Xt Intrinsics, or Xlib itsell during its

execution. This configuration is illustrated in figure 5.

Many user interface designers elect to design their own widget sets. Some
do it for the challenge. Others design their own widgets out of nccessity. A user
interface designer may have a need for a special widget not provided by any available
widget sets. However, designing custom widgets decreases the portability of the user

interface code and of the application code in gencral [9].

33

2.5 The current status of the NeuralGraphics
The NeuralGraphics system was designed for the Silicon Graphics IRIS work-
station and written in the ‘C" programming language. The environment includes

demonstrations and applications of Kohonen mappings, multi-layer feedforward net-

works using backpropagation. hybrid (joint super vised/unsuperyvised) training pai adigms.

radial basis functions, hopfield associative memory, error surface analysis and net-
work topology analysis. The NeuralGraphics software package consists of indepen-
dent programs run from a common menu. The programs are selected (rom a shell or
script program which calls the individual programs. Each program is independent
and is run as an execution file from the script programn. This scction will discuss the

modules which make up the NeuralGraphics package. [51]

2.5.1 Basic Structures and Design Considerations. Each of the neural
networks of the NcuralGraphics package is composed of a number of independent
software modules. In addition to the basic modules, a graphics tool box is provided,

which is specific to the Silicon Graphics IRIS system.

At the highest level of abstraction, a neural network simulation consists of two
loops: the network loop which is controlled by the programmer, and the event loop
which is usually associated with the hardware. The event loop is the hardwaie and
software structure which watches the input devices, i.e. keyboard and mouse for

activity.

The neural network loop consists of: a routine to select the input vectors,
a propagation algorithm to feed the vector through the network and compute the
output of all the network nodes, a training routine for modification of weights. a

graphic-display function and an analysis routine for periodic testing.

The event loop is concerned with the hardware and monitors the keyboard

for the keys being pressed or the mouse being moved. This loop allows the user to

change the flow of control in the training process to for such functions as saving the

weights, changing the network topology, or eliminating nodes.

Outside both loops is an important lower level modules which includes the ini-
tialization procedure for the graphics hardware and an event driven menu to control

the training and operation of the network.
In pseudo-code the general flow of the network is shown below [51]:

begin

INITIALIZE

loop {
MAKE_INPUT
PROPAGATE
TEST
TRAIN_NET
DISPLAY_NET
Event Handler}

end loop
end
2.5.2 Objects and Operations. The OOD design of NeuralGraphics pack-

age was done by creating two types of software elements: objects and operations. The
NET object is made up of a number subobjects, some obvious, like layers, nodes. and
weights. and some not so obvious. like pointers to propagation and training rules,
and connection information [51]. In parallel to the objects are the operations, or
those procedures which act upon the objects. In this case, the net can be displaycd
or a layer can be propagated, updaled. lested etc.

The procedure uses an object in the form of a data structure: a network and
an array of Jayers.

typedef struct{
int layers;
float *input;
float *output;
float *desired_output;
short *out_mask;

layer *layer[10];
} NET;

NET contains variables to declare its input, output. desired output and an

array of layers. Layers are a substructure to NET [51}.

typedef struct{
int size_input, size_output;
float *input;
float **weights;
float *mask, *out_mask;
float *output;
float *theta;
float *delta;
float **momentum;
void (*update)();
ficet (*propagate)();
} LAYER;

The NET object was made up almost entirely of pointers. The only element

that is actually stored in the NET is the actual number of layers.

2.5.3 Initialization Modules. The initialization routine has two functions.
The most important is the establishment of the network in memory. In addition,
the weights. and thresholds are filled either by a random number generator or by a
stored file from a previously trained net. The second function is the equipment check
to determine the nature of the graphic displays and to initialize the video drivers
as necessary. The size of the screen, color planes, and graphic capabilities would

determine exactly how much data can actually be displayed. [51]

2.5.4 The Main Program Loop . The main program loop consists of the
MAKEINPUT module. the PROPAGATE module, the TRAINNET module. the
TESTNET and the DISPLAY and SHOW modules. A counter was used to inhibit

the calling of some modules thirough the loop to reduce computations. For example,

the screen may be updated only every few hundred cycles. Each pass through the
loop represents one training cycle, so MAKEINPUT. PROPAGATE, and TRAIN-

NET will always be called.

2.5.4.1 Make an Input Veclor and Desired Output Veclor. A set of
input patterns and a defined classification. are essential to the training of a neual
net. In other words. an input vector and a desired output (doft) are needed for every

update cycle.

2.5.4.2 File Input of Examplar Sets. Most problems can be de-
scribed in terms of a set of input vectors and a defined classification. An exemplar is
selected randomrly from the pool whenever the MAKEINPUT routine is called. The
routine should ensure that in addition to random selection of an exemplar number,
there is also random selection based on class type. This prevents excessive training

on a single class, when the classes are not evenly distributed in the input file.

2.5.4.8 Propagaling the Input Vector . With the organization of the
net in memory, the net can begin to learn and classify data. To use the net. the
rules for propagating the data from the input to the output must be specified. This

is the purpose of the Propagate package.

The feedforward routine is really only a hook to the real fecdforward method,
pointed to in the laycr data structure. The funciion pointed to in the laycr data
structure only update one node. So. the feedforward routine will loop through all

the nodes.

2.5.4.4 Updating the Weights. The TRAINNET module specifics
the training algorithm for the network. It is only a hook to the real update routine.
Because the update of a particular node may depend on all nodes in a layer. the

update routine will update an entire layers weights.

2.5.4.5 Measuring the Error. Network performance is evaluated in
two ways. First, training is periodically stopped and a test set is evaluated: The
second method checks the performance after every training cycle against the current
training vector. For a general evaluation of the neural net performance, a set of
training data is run through the net without training cycles between tests. For a
more specific analysis, using a data set different than the one used for training, can
show the validity of the feature set used to classify the targets. The TEST routine
allows this type of checking mid-process by running a quick test set through the
net, then measuring the performance. The test set is specified in the initialization
routine. When the data is read into memory during initialization, the first line of
the file specifies the number of training exemplars followed by the number of test
exemplars. This partitioning of the data allows the TEST routines to test the net

with a set of vectors the net has not seen before.

2.5.4.6 Displaying the progress. The display routine refers only
to the graphics portions of the display. This includes such functions as drawing
the network weights. drawing the nodes, setting the colors, finding data ranges,
and drawing color bars. The package is split into two types of graphics routines.
The basic set contains those functions that are machine dependent. In general,
a macro is used when possible to allow for redefinition to other machines. Those
which are not machine dependent are combinations of the basic routines that are
machine dependent. An example would be the color bar routine. These two types of
routines are included in the graphics package. In general, when the problem under
consideration changes from something like a Kohonen map to a counterpropagation

model. the entire display package is replaced.

2.5.4.7 Interactive Program Conlrol. An cevent-driven menu pro-
vides control for housekeeping functions of the network. Event driven meuus require

a hardware event to call the menu subroutine. No device polling is necessary. The

38

event, in this case, is typing a control C on the keyboard and is detected using
signal.h . A control C activates a hardware interrupt to Kill address vector. The

program has substituted the normal kill address vector with the menu address vector.

While the main purpose of the menu is to allow user to save and restore weights;
the menu also allows control parameters to be changed while training is in progress.
A menu display in a text window offers a series of selections. Selection of a particular

item will then prompt the user of the parameters associated with the particular call.

2.6 Summary

This chapter consisted of a literature review in the areas of objected-oriented
design, graphical user interface, X Window System, and the current status of Neural-
Graphics software package. In the first section, Object-oriented design was defined
and various concepts described: The key terms in object-oriented techniques are
object and class. An object is something which can be changed. It has behavior,
state, and identity. When objects have a similar structure and behavior they are
often grouped into classes. Another term defined was inheritance. C language, which
was used to implement ANNS, does not support inheritance. Two object-oriented
design processes were described, including an in-depth description of Booch’s pro-
cess. The research conducted showed that the process, as described by numerous
authors, is basically the same. The first step is to identify the objects and group
them into classes. At the same time as objects are identified, the operations which
those objects require can be determined. As with other design techniques, an object-
oriented design process should be an iterative one. This section also described some
of the advantages and strong points of object-oriented design. Object-oriented de-
sign techniques provide the implementer with an easy way to follow sound software
engineering principles. Object-oriented design techniques provide a modularized sys-

tem which permits easier maintenance of the actual code. A good object-oriented

39

design ensures weak coupling and strong cohesion as well as supported abstraction.

These are all very important software engineering principles.

The review of graphical user interfaces identified some of the desirable qualities
of user interfaces. This section discussed “how” a user interface should be designed
so that the users will feel comfortable with the system and can be more productive.
Then, an overview of the X Window System and its extensions was presented. The
X Window System is a tool user interface designers can use to construct profes-
sional, and hopefully, user-friendly interfaces. Lastly, the original software design
and data structures of the NeuralGraphics package were described. This section out-
lined the major software modules which make up the NeuralGraphics environment.
The following chapter will present the requirements analysis and specification for the

development of the ANNS system.

40

III. Design Methodology, System Requirements Analysis and
Preliminary Design

3.1 Introduction

This chapter presents system requirements and preliminary software design for
ANNS - The AFIT Neural Network Simulator. Before work can proceed on any
project an outline guiding the development of this work must be produced. The
software design methodology of ANNS system is presented in the first section of this

chapter.

3.2 Design Methodology.

An important part of any software development project is the overall model or
methodology for accomplishing the task. The methodology outlines the steps to be
taken from inception through implementation to retirement. It provides an organized
approach to software development and allows for management of the development

effort.

3.2.1 Current Methodologies. Currently, there is no one standardized
methodology being used for software development. Unless a method has the flexibil-
ity, it is doubtful that any particular one will be perfect for all software development.
However, some organizations have adopted one method over the others and tend to
force all software development activities to follow the adopted mode. Some of the

more popular methodologies in use today include:

Classic Life Cycle (Waterfall)

Evolutionary (Prototyping/Interactive)

Program Transformation

Spiral Model

The classic life cycle paradigm calls for a systematic approach to software

development. The step in this approach include (see Figure 6) [42]:

Requirements analysis and definition. The system’s services. constraints. and

goals are established and defined.

o System and softwarc design. Using the requirements definition as a base. a de-
sign is drawn up of the syvstem that can be readily transformed into a computer

program.

o Implcmentation and unil testing. The software design is transformed into soft-

ware units. These units are tested o verify that they meet the specifications.

o Syslem lesting. Units ave integrated and tested as one complete unit. After

the testing is completed and successful, the software is delivered to the user.

o Operelion and maintenance. The software is installed and put into use. Main-

tenance occurs throughout the system lifecycle.

In actual practice these phases are rarely distinct; they can overlap and feed
off cach other. A major problem with this approach is that the system development
rarely follows the sequential flow. Iteration always occurs and creates problems
because it is difficult to determine the project’s progress. Another major problem is
that it is often difficult for the user to state all the requireinents up front. Theicfore
the general consensus was that the Classic Life Cycle model does not lend to itself
well to the design of user interface system. This is particularly due to the limited
dialogue between developer and user once the design staits. On the other hand,
prototyping provides a biridge to communicate with the user to better determine the
system requirements and to help prevent designing the wrong system.

The prototy ping paradigm can be used when the user does not have a complete
set of requirements. An initial system. which may lack any support processing, is

developed by the designers to demonstraie to the user that the project is feasible.

This witial svstem can take three forms [29]:

Requirements
Analysis &

Definition

l

System &
Software

Design

Implementation
and
Unit Testing

l

System
Testing

Figure 6. The Classic Life Cycle Model

43

e A paper prototype that depicts human-machine interface in a form that user

can understand.
e A working prototype that implements some subset of the system.

e \n existing program that emulates part of all of the functions desired but needs

to be inproved upon for this development effort.

This approach. like all others, starts with requirements gathering. After this initial
phase. a quick design follows which focuses on those aspects of the system that will
be visible to the user. This quick design leads to the development of a prototype that
is evaluated and refined; a process of iteration which continues until the svstem fifs
user requirements. For the ANNS system development using this model. there are
some existing programs that emulate part of all of the simulation [unctions desired
but needs to be improved. such as neural network algorithm functions in Ncural-
Graphies system and X window graphical user interface protocol in some existing
simulation system. However. prototyping does have some problems such as reliabil-
ity. robustness, and safety that cannot be adequately expressed. Still, the ANNS
graphical user interface is a prime candidate for prototyping. because it depends on

visual displays and heavy interaction with the user [29].

The Iterative design paradigin has the primary advantage that a working sys-
tem is produced at cach iteration. Thus. user interface capabilities and improvements
can be incrementally added to the system. The key point to this methodology is
that the system is broken down into small manageable picces, which arc prioritized,
and implemented one at a time. This is attractive for this effort because of the time
constraints involved. A workable neural network simulation subsystem and graphical

user interface are developed at cach stage and are ready for implementation.

The Program Transformation methodology is emerging as an attractive alter-

native to program generation. In this paradigm. a formal specification of the system

requirements is produced. This formal specification is then automatically trans-

formed into syntactically correct code. Some human intervention may be required
to assist in the transformation. The generated code is then validated against the
user's requirements. If the system must bhe modified. then the adjustments are made
to the formal specifications and the process is repeated. \With this method, there
is no design stage. Since a large part of user interface generation is developing the
screen layout, this system is not the most desirable. This is because many graphical

screen designs can be produced from the same set of requirements.

The Spiral Model is a risk-driven approach to the soltware development process
1]. In this methodology. the following stens are repeated until the program is fully
} g3 g I)

developed.

1. Determine objectives, alternatives, and constraints.

™)

Evaluate alternatives.

3. identify and resolve risks.

4. Develop and verify the next-level product.
5. Plan next phases.

Depending on the identified risks, the fourth step listed above may usc the
classic life cycle, prototype. iterative. or transform approach. Barry Boehm writes

[1:63]:

The spiral model also accommodates any appropriate mixture of a
specification-oriented, prototype-oriented, simulation-oriented, automatic
transformation-oriented, or other approach to software development, where
the appropriate mixed strategy is chosen by considering the relative mag-
nitude of the program risks. and the relative effectiveness of the various
techniques in resolving the risks.

3.2.2 The Methodology Deccision. It 1s sometimes the case that no one

methodology is best for a software design project. For ANNS system development,

45

Requirements
Analysis
i Imtial
Prototype
Developtent _.-'l Iteration n <
l-—) Preliminary -1 ¢
Design ‘] Iteration 3 5 i
<1 Hteration 2 B
| Bvaluat Iteration 1 Regre- |
and . ssive .
Detaild | 30teme. | Unit . &
Plan 5) . Testing b
Design | ntation | Testing *
gt | (Codes L
Decomp- | Reuse) o
osithon}
Inteprated
———————3= | .nd System
Testing
I_) Instailation
and
Maintenance

Figure 7. ANNS Design Methodology

46

a hybrid paradigm which combines the best characteristics of the classic life cycle,

prototype, and iterative methodologies was used (as figure 7).

The first step involves an explicit requirement analysis phase before developing
the initial prototype. Before jumping into a software design. the software engincer
should have an understanding of at least the fundamental terms and concepts of the
problem domain. If the software engineer has current experience in the domain arca.
this step may be omitted. However, if the designer has little or no experience or if
recent advances have occurred in the field. a study or review of current topics should
be conducted. Accordingly, the domain analysis conducted for this ANNS system

consisted of:

o Reviewing recent technical reports in the areas of neural network simulator.
o Reviewing recent thesis cfforts in the areas of designing graphical user interface.

e Conducting a literature review in the areas of algorithm animation and X

window system.

After conducting the domain analysis, initial prototypes were developed. These
considered of sample screen layouts to show the expected behavior of the ANNS
system. The prototype stage was followed by an object-oriented high-level design of

the overall user interface.

After finishing the preliminary design and before conducting the detailed design
for cach iteration, an evaluation and planning stage was conducted. This consisted
of evaluating various alternatives for implementing the next portion of design. I'ot
each alternative. the expected benefits and risks were weighed. In addition, any
constraints placed on the user interface were considered for possible impact. A plan
was then developed for implementing the selected alternative in a manner that would
maintain or enhance the object-orientedness of the overall design. Efforts weie made
to reuse as many components as possible while maintaining high cohesion and low

coupling between modules and iterations. Using the appropriate plan aud functional

47

decomposition, a detailed design was created. This, in turn. was used for generating
the code for the given iteration. Unit testing was then performed on the individual
module to ensure the proper functionality was achieved. Any time a major change
or modification is made to a piece of softwate, there is the possibility of introducing
errors into previously correct code. Thus, unit testing was followed by regression
testing to ensure the newly added module did not adversely aflect the functionality
of previously written modules.

After the last iteration was completed. the end-user and client-programmer
user interface soltware were integrated with neural network simulation softwaie to

form ANNS system on the Sun workstations.

3.3 System Requirements Analysis.

While the design model provides the ‘How™ for ANNS system development. the
requirements analysis gives the development the *What'. This section presents the
system requirements analysis for ANNS. Since the goal of this effort is to establish
an integrated and unified neural network simulator system, using the ANNS sys-
tem overview model (Figure 8 is an idealistic abstract model) as a starting point.
the analysis is conducted from two points of view: the end-user and the client-

programmer of the ANNS system.

Based on the results of the literature review, the structured analysis methodol-
ogy of Edward Yourdon [60] was used and the enumerated requirements specification

were compiled.

The idea behind structured analysis is to reduce the complexity of a problem
by hieratchically decomposing the problem into pieces that can be more casily un-
derstood. The decomposition can be based on data or processes (mmethods) and is
refiected through a scties of junclion diagrams. Fach functional diagram illustiates
one level of the decomposition. Figure 9 shows the highest-level object functional

diagram for ANNS.

48

Paradigm Paradigin
Class #1 Class #n
P TR e eor s S
Inputs Inputs
Alpithms Paradigm Library Alghthms
Graphical Graphical
Views Views

ANNS System
Environment Manager Library Manager
A
Client-P:
End-User Interface |e;1me'r::ﬂgcl:mmer

Figure 8. The ANNS System Overview

A process is presented by a circle on the functional diagram. The process name
and number appear in the circle. The process number provides a means for tracing
through the hicrarchical decomposition. Interfaces between processes ate represented
by arrows entering ot icaving process circle. The arrows represent data produced by

or needed by a process.

Client-Programmer Inputs

0

Manage
End-User Inputs Workstation Qutputs
- ANNS >
System
Functional Model Level 0 TITLE: ANNS System

Figure 9. The Top-Level Object Functional Model of Design for ANNS System

3.3.1 [End-User Requirements Analysis. The end-user of ANNS system
should be able to customize the simulation environment. Multiple Neural Network
(NN) algorithm windows, with multiple views of the neural network algorithm in

execution should be possible. The user should control the position and size of NN

algorithm windows and views. The user can close NN algorithm windows at any time.

Likewise. a neural network algorithm window’s contents may be replaced at any time.

F— —

The user may control cach simulation window individually or control all windows
simultaneously. In cither case, controls available to the user are: start or continue a
simulation, restart or reset a simulation. pause or terminate the simulation. single-
step the simulation. and control the speed of the simulation. The simulation system

may be exited at any time.

Neural network algorithm windows must provide a mechanism for monitoring
and modifying the input parameters. In addition to the view windows, every neural
network algorithm window should support a status display which presents statistics

describing the current state of the execution.

The neural network simulation should be very flexible for the user to save and
restore a particular environment, where the environment includes all user-selectable
options available at a particular time, such as position and size of windows, views,

neural network algorithms. and input parameters.

To help users understand all the options available, on-line help should be avail-

able for every interactive function.

3.3.2 Client-Programmer Requirements Analysis. A well-defined. con-
sistent programmer interface is essential to the effectiveness of a neural network
simulator. If new neural network algorithims or paradigms, views, and input param-
eters cannot easily be added to the system, the system is not an integrated simulator
system and cannot fulfill its purpose. The client-programmer should be able to cre-
ate. modify. and delete paradigms or algorithms within the neural network simulator

system.

The system should provide a library of all neural network algorithm simulations
as well as a library of primitives to support color visualization. The system should be
structured such that the neural network algorithim simulations are independent and

separate from the main simulation contioller. Individual neural network algorithm

simulations can be added. dcleted, and modified from ANNS with no effect on othier

neural network algorithm simulations or the system as whole.

Client-Programmer Inputs

Neural Network

0.1

M Algorithm
anage ; ;
Neura Simulations
Network
Algorithm
Simulations

0.2
Manage

Simulation
Environment

Workstation
Outputs

End-User Inputs

Functional Model Level 1 TITLE: Manage ANNS System

Figure 10. The Functional Decomposition Diagram Level 1: Manage ANNS System

3.3.3 Inumerated Requirements for ANNS System. (see Figure 9, 10,

1, 12. 13. 14)
L. Establish a user interface to ANNS environment manager

(a) Allow user to customize the ANNS environment

1. Provide multiple neural network algorithm windows

ii. Provide multiple graphical view windows within each neural network

algorithm window

Client-Programmer Inputs

Neural Network Algorithm{ Simulations

Y
0.1\
Modify =

Paradigm

Paradigm

0.14

Delete
Paradigm

Functional Model Level 2

TITLE: Manage Neural Network Algorithm Simulations

I'igure 11.

The Functional Decomposition Diagram Level 2: Manage NN Algorithm
Simulation

System Maintenance Commands

|

Get
Component
Commands

Component Maintenance Commands

v

0.1.3.2
Add NN Neural Network Algorithiy Simulations

Algorithm
0.1.3.3

Modify NN
Algorithn
Component

0.134
Delete NN
Algorithm
Component

Functional Mode! Level 3 TITLE: Modify Paraidgm

Figure 12. The Functional Decomposition Diagram Level 3: Modify Paradigm

0.2.1

Neural Network
Algorithm Simulations

Process . ~ .
End-User Environment Commands
Comnw \l, ‘L
i 0.2.2
Manage
- NN
=\ Algorithm
End-User Window
Inputs 8.2.3 Workstatic
Use Qutputs

2| Eavironment
Controller Y

Control

Functional Model Level 2

TITLE: Manage Simulation Environment

Figure 13. The Functional Decomposition Diagram Level 2: Manage Simulation

fnvironment

i

(o}

Environment Neural Network
Commands

Algorithm Simulations

0.2.2.1
Process
Environment
Commands

Environment Commands

Iy

0.2.2.2

Get
Input

=\ Parameter
End-User Files ¥
Inputs ﬂ N Workstation
> Manage Outputs o
Status
Display
Pl 0.2.2.4
| Manage
Master

Control

Functional Model Level 3 TITLE: Manage NN Algorithm Window

Figure 11, The Functional Decomposition Diagram Level 3: Manage NN Algorithm
Window

1.

v.

Allow user to position and size neural network algorithm and graph-

ical view windows as desired

Allow user to zoom and pan display in view windows at any time

. Allow user to terminate simulation session at any time

(b) Allow user to select paradigms. neural network algorithms, and input

parameters for cach neural network algorithin window

.

. Select paradigm class from a list of available classes stored in the

paradigm library directory, such as back-propagation, hybrid training.

radial basis function, hopfield associative memory, ctc..

. Select neural network algorithms for simulation from a list of available

neural network algorithms within a selected paradigm class.

Specify input parameters for a neural network algorithm from a list

of input parameters associated with a selected NN paradigm

iv. Close siiulation window at any time

(¢} Allow user to control execution of neural network algorithm simulations

1.
1.

iv,

vi.

. Select control mode: individual or simultancous

Start or reset a simulation
Control speed of simulation

Terminate or pause simulation at any time

. Restart a paused or terminated simulation

Run simulation in a single-step mode

(d) Provide a simulation control mode to allow user to control all the simu-

lations appearing at the same time

(e) Provide environment save and restore function

i

1.

Save all user selections currently in effect

Restore previously saved environment

St
-]

(I} Provide on-line help for every interactive function

2. Establish a ncural network programmer interface to neurai network paradigin

simulation library

(a) Allow neutal uetwork programmer to create, modify. and delete neural
network algorithm simulation within ANNS system
i. Add. modify. and delete neural network algorithms from neural net-
work paradigm class.
ii. Add. modify. and delete neural network algorithm graphical views
iii. Add. modify. and delete neural network algorithm input parameters
(b) Provide automatic validation of changes to ANNS system
i. Interface errors are reporied immediately

ii. Protect ANNS system from accidental corruption during development

of new neural network simulations

(c) Provide library of primitive functions to support coloring simulation

3.4 Preliminary Dcesign

After the requirements were determined. paper designs of the screen layouts
were drawn and evaluaied. These served as the starting points for the prototypes.
Even though the prototypes did not have the full processing capabilities, they were
useful in cvaluating important aspecis of ANNS system. This section identifies

several design issues in developing these prototypes and the decisions made.

An object-oricntcd design methodology was used to translate the requirements
into high-level objcels and opcrations. The first step in producing the object-oriented
design was to identify the major objects and object classes. Booch defines a class as a
set of objects that share a common structure and common behavior [5:93]. For ANNS

svstem design. two high-level graphical object classes and a nearal network algorithim

[

component object class were defined. Figure 135 shows the high-level object classes

and their subclasses. In this section. the high-level classes and their interfaces are

defined. Specific object instances and their relationships are also described.

ANNS

SEam——
paradigm

component

NN
algorithm

component

S

e T
menu window
;:y
' \ [r R
NN main leoritl graphical man
aigorithm menu a gf’r('; 1 view window
window .

menu window

_ J \ N

The Window Object Class.

Figure 15. High-Level Object Class Structure

A window

that represents a rectangular region of the woikstation display.

moved and resized. Text o1 graphics can be displaved in a window.

dispiayed within other windows . Figure 16 shows the ahstract

specification for the window object class.

is an abstraction
Windows can bhe
Windows can be

data type (ADT)

window

Position(x,y)
Size

Text
Graphics
create()
show()
destory()
setPosition()
getPosition()
setSize()
getSize()
hideQ
putText(
putGraphics()

Figure 16. ADT Specification for ANNS window Object

The ANNS design incorporates three levels of windows to provide the user with
multiple simultaneous neural network algorithm simulation and multiple graphical
views of each simulation. Figure 17 shows the instances of window used by ANNS

and their relationship to onc another.

e Main Window.
This is the highest-level manager window of the ANNS environment: all in-
teraction with ANNS is contained. No simulation actually takes place in this
window. The main window supports multiple instances of the N\ algorithm

windows.

¢ NN Algorithm Window.
Like the main window. NN algorithm windows exist mainly to contain other
windows. Every NN algorithm window is associated with a particular NN
paradigm class. NN algorithm window may be created and destroyed at any
time, but therc is a limit to the number that can exist at any given time. ISach
NN algorithm window supports multiple instances of graphical vicw windouws.
NN aigorithm windows can be resized and moved anywhere on the screcn of

the Sun Sparc2 workstations and they may overlap one another.

60

ANNS

i Main
l Window

NN NN
Algorithm Algorithm
Window

Window
1 n

Graphical Graphical Graphical
View View View
" Window Window
Window

1 1 m

Figure 17. Instances of windows

61

e Graphical View Window.
Neural network simulations are graphically displayed in graphical view win-
dows. Every graphical view window is associated with a particular graphical
view of a ncural network algorithm. Graphical view windows can be resized

and moved.

3.4.0.2 Thc menu Object Class. The menu provides a method for

users to make a selection from several options. In XView protocols. menu consist of
low-level objects called menulicms. menwltem can be associated with a particular
Q

operation which invoked when the menultem is selected. Figure 18 describes the

menu object class with its instances and operations.

menu

Position(x,y} Selection
noltems itemNo
menultem

create()
show()
destory()
setPosition()
getPosition()
hideQ
grtSelection()
setmenultem()
getmenultem()
eletemenultem()
getNoltems(

Figure 13. ADT Specification for ANNS menu Object

The ANNS provides two instances of menu for user with high-level decisions

oi two levels.

e Main Menu. This menu is used to select a new NN algorithm simulation
and to active panels for simultancous control of simulations and for saving and
restoring simulation environments.

o NIN Algorithm Window Menu. An NN algorithm window menu is associ-

ated with every NN algorithm window. This menu is used to activate various

62

panels which control the simulation, retrieve or save input data (weights) file

and present a status display for the simulation.

3.4.0.3 The component Object (lass. The component object
provides means to sclect and control the NN paradigm components depicted in Figure
8. The component objects are associated with NN algorithin windows and graphical
view windows, but not with the main window. Ligure 19 shows the component

object class with its instances and operations.

component

componentName
Parameter

Value

setComponent()
getComponent(

setParameter()
setValue()
getParameter()

getValue()

Figure 19. ADT Specification for ANNS component Object

The ANNS design uses three types of components: inpul, N.V paradigm. and
graphical vicw. Each type supplements the basic operations supplied by the class with
a set of component-specific operations. Figure 20 illustiates how the components

fit into the NN algorithm window structure.

3.5 Summary

This chapter presented a summary of design methodologies currently being
used for software development. This was followed by a description of the hybrid
methodology used for ANNS system. To start the first step of this hybrid software

design model. the system requirement analysis was described in the form of functional

63

NN

NN Algorithm
Algorithm

Menu Window

Graphical
View

Windows

Input NN Graphical
C ¢ Paradigm View
omponen
p Component Component
getlnput() getlEQ ProcessIE()
simulate updateView()
Algorithm() paintView()

Figure 20. Structure of NN Algorithm Windows

64

decompuosition and enumerated requirements. The object-oriented design technique

and the design objects with operations were also described. In the next chapter.

the preliminary design is translated into the detailed design and implementation of

ANNS.

IV. Detailed Object-Oriented Design and Implementation
4.1 Introduction

This chapter describes the detailed object otiented design and implementation
of ANNS on Sun SPARCstations using the XView window-based GUI (Graphical
User Interface) environment. The purpose of the XView GUI is to bind all the other
neural network subsystems into one homogeneous. user friendly environment. This

implementation is based on the preliminary design developed in chapter I11.

The topics discussed in this chapter include: the motivations for selecting
XView as GUI, the detailed OOD design. the graphical representations of depen-
dency modules. the implementation approach, the results of the implementation.

and the testing methodology.

4.2 Motivations for Selecting XView as GUI

4.2.1 [From Users Perspectirve. With the large influx of Sun SPARCsta-
tions. most contemporary users at AFIT are using OpenWindows simply because
all of the Sun workstations currently in use at AFIT default to OpenWindows. The
OpenWindows environment is largely implemented with the OPEN LOOK toolkit
(parts of it are still in XView). OpenWindows is the default user interface environ-
ment for the SPARCstation2.! It is running on all SPARCstation2s at AFIT. The
XView interface has much the same look and feel as the OpenWindows applications
supplied by Sun. So, the goal, from a users perspective. is to make ANNS indis-
tinguishable from other OpenWindows applications, which means end users do not

have to learn another interface.

"This is an mstallation configuration decision. Sun bundles OpenWindows with the operating
system. Of course, system administrators have the option of mstalling other environments

66

4.2.2 From Programmers Pcrspective. XView provides the programimer
with a predefined set of interface components which are intended to simplify appli-
cations development. Many of the ANNS objects map directly to XView objects,
sigui. antiy simplifying the implementation. XView is also an object-oriented and
OPENLOOK compliant widget set from Sun Microsystems. The XView program-
mer’s model was complied with the OPENLOOK standard. The XView widget set
is not as sophisticated as that of other widget sets, like Motif and Athena which
are also very popular in the X windows world. Of all these toolkits. XView has the
casiest programnier model to understand and implement. A number of simple, but
effective examples are provided with the OpenWindows development software and

arc the same examples used in [9].

4.3 Detaded Object-Oriented Design

In this section, the detailed design for cach object that is part of ANNS is
discussed. The physical design and object dependencies of ANNS is graphically

depicted using module diagrams.

A module diagram is used to show the allocation of classes and objects
to modules in the physical design of a system: a single module diagram
represents all or part of the module architecture of a system. [5:175)

The object dependencies for each detailed design module in ANNS was shown
via diagrams composed of a modified version of module symbols presented in [1:55-
59] and [5:175]. Module diagrams are used to represent the (hierarchical) procedural
structure of the ANNS program modules. Module diagrams are an effective program
structure notation, yet simple enough that practically anyone can understand them
with little or no explanation. Figure 21 shows the three types of modules used in
this chapter to describe the ANNS system packages. The first is used to represent
the main ANNS subprograms. The second module represents the packages that

encapsulate the object operations in the system. The third symbol is used as a space

67

saver to represent that there are several neural network subsystem which includes
paradigm packages. The directed arrows between modules indicates compilation
dependency where the module at the source of the artow depends on the module at

the destination of the arrow.

All Packages
Subprogram Package in Subsystem
Data
Object(s)
> >
] 1]
] i3
Operations
depends
A > B

Figure 21. Booch Module Symbols

The module diagram of Figure 22 represents the architecture of the ANNS
systerm. The design of the ANNS system consists of three levels of execution linked
via UNIX sockets. Each class system is a sell-contained. executable system. Without
the sockets. each individual class system in the ANNS system could be run stand-

alone. The three leveis of execcution are:

o The ANNS main process.
The ANNS main process is the highest level interface to ANNS. It acts as the
environment manager and creates the main process window, the main menu
window, the central control window, the environment control window, the exit
window, the help window and a means fo. starting NN paradigm simulatious.
o The ANNS common library.
The middle level of execution is the NN paradigm-specific window-based pro-

cess called ANNS common library. Each NN paradigm component interfaces

68

with the common library for simulation control. The common library provides:
the graphical view windows for viewing the dynamically graphical display, the
master control window for monitoring and modifying the parameters that af-
fect the simulation, and the online help window for understanding the usc of

all the parameters in the master control window.

o The ANNS paradigms.
This is the lowest level of execution which is transparent to the users. Each NN
varadigm has three windows associated with the ANNS common library. The
graphical view window is directly under the paradigm’s control. There is only
one NN paradigm (multilayer feedforward networks using backpropagation)
implemented so far, including eleven algorithms: Back Propagation. Back Prop
W /Momentum, Second Order Learning. Cottrell Identity Net, Tarr/Cottrell
Identity. Auto-Add a Layer. Gram Schimidt Network, Gram-Schmidt 1D Net,
BrainMaker. Radial Basis, and Conic Basis. If there are time constraints for
this thesis cycle efforts. the rest of the paradigins shown in the figure 22 could

be implemented by client-programmers or by the next thesis cycles.

4.3.1 Mawmm Proccss Window Module. The ANNS main process window
is not associated with any paiticular NN algorithm simulation, but provides an
environment in which any NN algorithm simulation can be controlled. Figure 23

shows the detailed design of main process -vindow module,

4.3.2 Main Menu Modulc. The main menu module is for options to create
NN paradigm menu window. central control window, environment control window.
help window. and exit window. Figure 24 shows the detailed design module of miain

menu module.

4.3.3 Central Control Window Module. This module provides a means for

simultancously controlling multiple simulations. It creates HELP pancl module, GO

69

ANNS
- { main()) Help
Main !
Window Window
- / \ <D
—3 I
—_4 -
1.
: Central Environmen .
ma'“ Control Control “f;"‘g
ent Window Window indow
—_—
- _l -’ > -
I - 4 - O
4 3 - I
 e— UNIX
Socket
0 fl
e o)
Common
Library (main())
Graphical View Help
Window l Master Control Window
Window ’]
>
== <5 =
O Eg I l
UNIX UNIEX S[}Néx UNIX
Socket S(écket UNIX . - Socket ocket Sogket
p;"d'g"“ Hopfield Kohonen puradigms
Propagation Maps >
D Tl I - - -
o R e o = o
I - O l I - O
Multilayer Perceptron Hybrid Propagation Sales Traveling Froblem

Figure 22. The Architecture of ANNS at the Top Level

Main

Window

O

1

I

. Iconify
Create Main Process
Menu l Events ANNS

> D -
-] I -
11 0 13

Figure 23. Module Diagiam for Main Process Window

NN Paradigms

Menu Window Main Menu Exit Window
) <) —l————‘—’)
- 11 11
11 I 17
Central Environment
Control Control Help
Window Window Window
)) D
1] 1 11
1 1 | -

Figure 24. Module Diagram for Main Menu Module

pancl module. STOP panel module, RESET panel module. and QUI'T panel module.

Figure 25 shows the detailed design of the central contiol window module.

Centiral
HELP Control QUIT
Panel Window Pane!
_1 1
> - >)
1 I 11
1 1] 13
GO t RESET
Panel [S)I,(,)ef Panel
D -l >
1T 1] I
1] T -

Figute 25. Module Diagram for Central Control Window Module

4.3.4 Environment Control Window Modulc. This module provides a
means for saving the current shiinulation environment. restoring a saved cuviron-
ment. or kifling a saved environment. The environment includes all users options
currently seiected: window size. window placement. aid NN algorithm paiameters.

The environment control window module is shown in figure 26.

4.3.5 Erdd Wndow Module, This module warns users that the executive
status of ANNS would be killed and the execution would exit by providing two

options to confirm exiting or cancelling. The Exit Window module is shown in

figure 27.

-1
3]

Path & Directory
Creator

D> |
]
]

1A

—

File Panel /

IR

= |
=
=]

— D]
.
o= |

HELP
Panel

-
]
]

LU LI

Environment
Control
Windew

TN

HHA
{UUU

Figure 26. Module Diagram for Environment Control Window Module

RESTORE

OaN

Exit

Window
-
|3
I
EXIT Cancel
Panel Panel
D D
1 |
I T

Figure 27. Module Diagram for Exit Window Module

4.3.6 Graphical View Window Module. This Module is the place NN
simulations take place. It handles the NN simulation events and display the updated
graphical view of NN algorithm simulation. The Graphical View Window Module is

shown in figure 28.

4.3.7 Muastcr Control Window Modulc. This module provides all options for
users to control the NN algorithm simulation. such as the simulation speed contiol-
ling. “Go” simulation. “Stop” simulation. "Reset™ all the parameters. and *Quit”™ the
simulation. The Window is divided into several sections: Control Section, Algorithm
Options, Simulation Status Display options, and Configuration options depending
on the type of NN paradigms. Figure 29 shows the detailed design of Master Contiol

Module.

.

Graphical View
Window
-
=L
T3
Process .
Simulation Display ,
Events Graphical Iconify
View
- IO -
11 I - 13
I I - I

Figure 28. Module Diagram for Graphical View Window Module

4.3.8 Multidayer Perceplron Paradigm. This is one of independent NN
subsystems in the third level of ANNS as in figure 22. It should provide the window-
based level with the Interesting Events (1Es) that drive the simulation and update
the graphical display on the graphical view window. The detailed design modules of

this system is shown in figure 30.

ILach subsystem or NN paradigm has one graphical view window and one mas-

ter control window associated with it.

4.4 Implementation

In the implementation stage, ' was sclected as the programming language.
since C provides the speed required for computer graphics intensive applications.

and supports modern software engineering concepts. The XView and SunOS, Sun

Master

e Control Simulation Speed
Control Section Window Controler
| >
1] 1 3
I 1 N

Simulation .
Status Error History
Window Window
y B
d> >
0= 3
- Cgnfiguration E;
Algorithm ngct:i?,ln Nodes Value
Options ‘l Window
o O -
- 3 3
I - T l
—

Figure 29. Module Diagram for Master Control Window Module

) Multilayer Initialize_Net
Interesting Perceptron
Events Neural Network _1
Handler (BG _main()) D ,
i l
1]
- - —>___]
—
— \ Make_Input
UNIX) I
Socket Do
Connector 1
B 3
-
A
[- Display Train \Kmpagation
. Net View Net
Algorithm
Selector ']
4> - - -
—4 i 0 I —
— 3 3 l 1

Figure 30. Module Diagram for Multilayer Perceptror: NN subsysicin

-1
-1

workstation operation system. provide an excellent interface to C programming lan-
fw) [}

guage.

4.4.1 Crealing and Mapping Objects from Deladled Design Modules. XView
provides a very clean interface to it’s object set. There is a common set of functions
that allows users to manipulate any objects by referencing the object handle. The

functions are:

e xv_init():

Establishes the connection te the server. initializes the Notifier and the Defaults/Resource-

Manager database. loads the Server Resource Manager database. and parses
any genetic toolkit command line options. Called once at the beginning of the
prograin.

e xv_create():
Creates an object. Every XView ebject is created with this function.

o xv_destroy():
Destroys an object.

e xv_find():
Searches for and returns an object with the specified parameters. If none is
found. the object is created.

o xv_get():

Get the value of the specified atiribute for the specified object.

o xv._set():

Set the value of the specified attribute for the specified object.

Using these six routines, programiners can create and manipulate the entire XView

object sct for ANNS.

4.4.2 Types of Objects in XVicw. There are eight basic object types in

XView. Three of these. Generie Objects. Windows. and Opcnwins are core classes

and are not directly instantiable by the user. The remaining five are discussed below.
The basic window entity is the frame. All other windows are classified as subwindows

and must be attached to frames.

e Frames
A frame is the basic window object to which the programumer has access. There
are two fiavors, a base frame. and a pop-up frame. A base frame is a {rame
with no parent. All other {ramnes are subframes. so a pop-up is any frame
which is not the base frame. Lach application has one base {frame. There are
no (prese:) limits on the number of subframes. A framne is characterized by a
border, which is managed by the window manager. and an interior which is
configured and managed by the programmer. The window manager controls
resizing. iconification, de-iconification. refreshing, quitting, etc. All XView

windows are {ramed.

e Canvases
A canvas subwindow is the XView graphics window. It's size is independent of
the owning frame. The entire drawing surface is called the painl window and
the visible portion is the vicw window. Multiple, scrollable views of a canvas

are allowed within a {rame.

e Text Windows
A text subwindow provides basic text editing capabilitics using the OPEN-
LOOK text editing model. This window is a specialization of the canvas sub-

window with text editing capabilities added.

e Menus
Menus are not actually XView windows. but they are bound to windows at
display time. XView supports a full range of menu types and options such as
pull-down, pop-up and pull-right. Menus can be pinncd to allow them to stay

on the screen after the selection is made.

¢ Scrollbars
Scrollbars are interesting objects. They can exist independently. or be attached
to subwindows. Scrollbars are windows (because they are visible) but they are
usually thought of as propertics of subwindows. Scrollbars do not manage the
objects to which they arc attached. it is the programer’s responsibility to

make the screen updates associated with scrollbar actions.

An important feature of XView that is not a window is the Panel. Panels implement
the OPENLOOK control arca. Panels manage pancl items. e.g. buttons, sliders. text
ficlds, and other forms of inputtling data. The motivation for panecls is to provide a
mechanism for propagating events. especially for objects which do not have a window
associated them. Panels are very important in XView. For example, an application
frame with no subwindows attached cannot catch interior mouse events. Attaching

a panel to the frame allows these iaterior events to be propagated.

Obviously. there is much more to XView than what has been presented here.

but this is sufficient to give the reader the necessary background for implementation.

4.4.3 Implementation Deersions. This major implementation decision en-
countered was to detetmine how to make a way that the client-programmers can

devclop and add their ncw NN paradigms or algorithms to the ANNS system.

4.4.3.1 Making a manageable development cnvironment.

¢ UNIX Socket:
UNIX sockets [13] provides the InterProcess Communication (IPC') facilities for
independent executable programs. This idea was used to control NN paradigm
processes for the ANNS system. The UNIX IPC interface makes IPC similar
to file I/O. Each NN paradigm process has a set of /O descriptors for rcading

and writing. The descriptor may refer to files, devices, or comiunications

channels. So. this solution creates channels between the ANNS main processing

procedure and every NN paradigm component (subsystem). It provides for
paralle] development of simulation subsystem and is simple to implement. In
this case. the NN paradigm subsystems are essentially stand-alone except for

the IPC hooks to the ANNS main process.

The Interesting Events (IEs):

Given that NN paradigms are implemented as separate processes with [PC
hooks to the ANNS main process. here comes up with a question: Whal docs
a NN paradigm process communicale with the ANNS main process 7 To get
a solution. the NN paradigm component needs some mechanism for report-
ing the Interesting Events for cach process. ln each NN paradigm subsystem.
the BackGround main (BG_main(). see figure 30) procedure identifies and
creates the 1Es to communicate the ANN main process and update the simu-
lation status to display graphical view on the graphical view window for every
process step. Using mwltilayer perceptron paradigm as a example. the IEs
would be INITIALIZENET for the first process step. The following processes
would be MAKE_ INPUT to the neural net. PROPAGATE the input vector.
TRAINNET. and then DISPLAY NETVIEW. The 1E communication model
that the ANNS main process communicate with each NN paradigm component

is shown in figure 31.

UNIX Makefile and Archive Utilities:

After the client-programmer interface was created. another question is: how (o
make a library manager and cnvironment manager as i figurc & of chapter 11
?Figure 8 shows an idealistic abstiact model of the ANNS system in which a
library managcer provides an interface thiough which client-programmers mau-
age NN paradigm components. and an environment manager piovides an in-
terface through which end-users select paradigm components to create inter-

esting NN paradigm simulation. In software, the concept of a component

library is extremely complicated and difficult to implement. because the new

NN Paradigm Componen

..................................

ANNS Main Process

—_— IE
Generator
¥

1 Lif_IE=END

{ Simulation
GO

Process

7~

E Simulate
5 Neural Net

Graphical
View
Generator

[Simulation 1
END

Get
IE

!

Update
IE

Update
Simulation
Status

Figure 31. The IEs Communication Model

82

NN paradigm components would dynamically be added to the ANNS system
by clinet-programmers. The solution for this case is to simply use the UNIX
Makefile utility and ar (archive) utility. To do this, the ANNS main process.
the common files library. and cevery NN paradigm component are organized
as separate compilation units. This structure makes the ANNS system more
modular. supports information hiding. makes files smaller and therefore caser
to edit. and makes it possible to recompile only those compile modules that

have been changed rather than the entite system. A portion of the top level

Makefile for ANNS is:

BASE = $(PWD)
LIBS = ANNSmain ANNScommon
PARADS = BackProp Hopfield Hybrid Kohonen STP
all:
for d in $(LIBS) $(APPS);\
do (cd $%$4;\
echo; echo ’#¥*x’ compiling the $$d directory ’skix’;\
$(MAKE) BASE=$(BASE))\
echo;

done

The ANNSmain and ANNScommon are library directories. The PARADS in-
cludes all paradigm components in the ANNS system. Fach of these paradigin
components is a dircetory with it's own Makcfile. Another UNIX facility is ar
atilitv. an important tool for promoting function level reuse for the C' language.
ar was usced to bundle the ANNS main process object files into a library file

with a single name calied HbANNS.a.

4.4.4 GUI Replacement Strategy from Silicon Graphies Jor Multdaycr Pereep-
tron Paradigm. Without a doubt. the overriding difficulty in this investigation was
in understanding the source codes of NeuralGraphies and graphics routines of the
Silicon Graphics System [39] [10]. There is precious little detailed end-users mnanial

for NeuralGraphies . but there is not any documentation for client-programiners.

Weeks were spent pouring over code and doing execution traces nsing diagnostic
print statements. If there wete an anotated, graphical representation of the major
data structure and control structure of the NcuralGraphics . the programmers could
seriously benefit from understanding the flow chart of the system structure. Because
the goal of the replacement process is to maintain NcuralGraphics in a orginally
functional state. no changes to the NN algorithm structures of NecwralGraphics
were attempted. lu this case, the algorithm source codes 1emain completely func-
tional. In addition to the GUI replacement, Parts of the efforts were in making
connection to the ANNS interface for Interesting Events (IL) of the Net_Loop in the

Backpropgation subsystem.

4.5 Testing Appraoches

This section presents the testing procedures. “Software tesing is defined as the
execution of a program to find its faults™ [12:191]. There are seven types of tests
that can be performed on a software system [12:192-204]. The following discuss the

tests performed on the ANNS sysiem based on these seven types of tests.

4.5.1 Unit Tests. Also known as white box testing because the test is
based on knowledge of the internal design of the module. According to the ANNS
design methodology as in figure 7 of chapter 111, unit testing was performed on the
individual module to ensure the proper functionality was achieved. This included all
the operations performed by the main menu buttoms and the operations performed

by master control buttons.

4.5.2 External Function Tcsls. Validate the erternal system functions.
This 1s also known as black box testing because the test petformed has no knowledge
of the internal design of the modules being tested. This type of test was used in

conjection with the integration test described below.

f:};‘)w

4.5.3 Integration Tests. Validate the interfaces between system parts

(modules, components, subsystems). It can be performed in one of three ways:

¢ Bottom-Up
Each module is tested separately using special development drivers that provide
the needed system functions. As more modules are added to the system, the

driver is replaced by the modules that perform the simulated functions:

e Top-Down
Uses a prototyping approach. A basic system skeleton is constructed and new
modules are added and tested as they are developed. The {function of lower

level modules are simulated by program stubs.

¢ Big-Bang
Each module is developed first. Then, they are all assembled and run together.
This is the lcast effective of the three methods. The need for special drivers or
modules stuba is eliminated: but, cach module is only given a cursory test with

this method and the likelihood of a totl system integration failure is great.

Integration testing for ANNS was performed using the top-down appraoch.
The main subprogram was developed and implemented with stubs for each major
function. \s cach module was developed. it was attached to the main system and

tested Lo ensure proper integration.

4.5.4 System Tesls. Validate the system to ils initial objectives. The
robustness of the systemi as a whole is consideted during these tests. They take into
consideration factors like peak loads and volume the system can accept, security,
performace under peak and normal conditions, systemn reliability, error handling,
and recovery mechanisms. The ANNS code was design to be internally robust. It

tries to take into consideration all posible input events to the svsiein. When a

failure is detected anyway, o sccondary mechanisin takes control where the program

terminates as gracefully as possible. So, the system testing for ANNS was actually

embedded into the unit and integration testing cases.

4.5.5 Acceptance Tests. Validate the system or program to the user’s
requirements. This test was done in conjunction with the installation test described

below.

4.5:6 Installation Tests. Validate the instability and operability of the
user’s system. In other words; test the sytem in a real user’s environment. This test
was performed by getting several volunteers to use the system and fill out question-
naires pertaining their evaluation of the system based on a set of criteria: Appendix
C contains a sample of the standard form used by the Department of Electrical and

Computer Engineering at AFIT to evaluate software systems.

4:5.7 Regression Tests. Run a subset of previously executed integration
and function tests to ensure that program changed have not degraded the system.
Any time a major change or modification is made to a piece of module, there is the
possibility of introducing errors into previously correct code. Thus, regression testing
was made at each iteration of changes during the implementation stage. After the
last iteration was completed, the ANNS system and the multilayer perceptron neural
network subsystem were intergrated, and then the intergrated ANNS system testing

was performed.

4.6 Results of Implementaion

This section presents the visible resuits of implementations based on the de-
tailed desgins. All figures are directly derived from the actual screen images layout
except the size of the images. See firgure 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, and 42.

86

A AN

AP

NI AR A NP

Figure 33. The ANNS Central Control Panel Model

Y

Figure 35. The ANNS Master Control Panel Model

»
(2}

Figure 36. The ANNS Configuration Options Panel Model

89

37. The ANNS Icon

F

igure

Multilayer Neural Net

d Output Average 1

Ire

W
k]
Q
- |

ctual Output

A

444

ars

Exempla

Right 000.00

TRAIN

Right 000.00

.
.

Test

AL IACOLE L PN P T O S

38. Algorithm Window Model

Figure

80

p Ayerage 1

BE Oesired out

Class 1 Sample 3

Actual Qutpu Count: 14

Exermpiars A/4

Avarage

put

BB Desired Out

mole 3

Class 1 Sa

{ Output Count: 26

Actual

or.dat

File:

IEERTIE)

. Ty

ison Model

ompar

C

WS

thm Window

ori

39: Two Alg

igure

F

B

Figure 40. Simulation Status Window Model

4.7 Summary

This chapter presented the ANNS detailed object-orietned design, the motiva-
tions for selecting XView as GUL and implementation. Implementation cssentially
consisted of the top-down mapping of ANNS design objects to their corresponding
XView objects. The dependencies of the design modules were also represented by

graphical figures.

The results of the implementation presented the actual screen images layout
for mapping the detailed object-oriented designs. The impleinentation decisions and
the test procedures were also discussed. In the next chapter the research summary

of the ANNS system is presented, and recommendation fo: the further rescarch are

offered.

RS ES
N u-"'?&. ;

Figure 41. On-line Help Window Model

Figure 42. Exit Notification Window Model

94

V. Conclusions and Recommendations
5.1 Introduction
This chapter summarizes the work performed for this thesis. It then presents

some recommendations for further research:

5.2 Research Summary

This thesis effort resulted in the development of an animated graphical user in-
terface for the neural network simulator. It provides engineers to the neural network
field of graphical demonstration to illustrate some of the concepts in neural network
problem solving: The results of the ANNS implementation have met or exceeded
the requirements established in Chapter III. The work to geneérate this project was

accomplished using an iterative approach. The major actions performed were:

o Analysis of the problem domdin.
Before doing any design or implementation, an intensive study was accom-
plished to gain an understanding of the terms, concepts, and philosophies
néeded to design a user interface for ANNS. This involved reseatch in the areas
of neural networks, graphical user interface design, object-oriented design, X

Window System, the NeuralGraphics package.

e Determination of system requirements.
The systém requirements were gathered through the series of literature reviews
of simulator systems; and based on the idea to create an integrated and unified.

neural network simulator for both end-users and client:programmers.

o Development of the high=level design.
Having laid the foundation through the accomplishment for the previous two
steps, the next task was the high-level, object-oriented design of the ANNS

system. This involved the identification of the objects, their attributes, and

95

the communication needed between them. At this point, several alternatives
of how to incorporate the X Window System into the design were considered

and the overview of the ANNS system was determined.

Detailed object-oriented design.

Before the detailed design, the motivations for selecting XView as graphical
user interface was discussed. This discussion based on the users perspective and
programmers perspective. For the detailed design stage, the modulc diagram

was used to illustrate the allocation and dependency of the classes and objects.

Implementation and testing.

The implementation stage was to create and map objects from the detailed
object-oriented design, and then generate the software source codes. At this
stage, the types of objects of XView associated with this detailed design were
discussed, some of the technical implementation decisions were made and the
GUT replacement strategy was depicted. This overall system was generated
through a repetitive process of evaluation and planning, detailed design, code
gencration, and unit, regression and integration testing. This method ensured
that a working product was available at the end of cach iteration. At the last

step, the visible results of ANNS modules were presented.

Recommendalions for Further Research

This development of effort provided interfaces that the end-users can simulate

this system friendly and the client-programmers can maintain the ANNS system

or add new neural network paradigms into ANNS ecasily. While this idcal design

of the ANNS system is a good beginning. there were certain features and neural

network paradigms that could not be implemented due to time constraints. Thus,

the following idcas arc provided as arcas of potential rescarch.

96

5.8.1 Deuvelop and Integrate all NN Paradigm Components into ANNS.

ANNS is too big: the time at AFIT is too short, and the learning curve is too steep
to attempt major design changes in concert with the GUI replacement for all the NN
paradigms 1unning on the personal computer version duting this thesis cycle effort.
Therefore, these remained jobs would be finished by the client-programmers or next

thesis cycles.

5.3.2 A Network Version of the ANNS. One major benefit of using X
window system is that it has built-in support for distributing the NN processing
and display activitics over several systems connected by a network; oue X client can
connect to multiple X display servers. In words, users can process the ANNS systein
from different remotc 1esources by computer networks if there is an existent network

version of ANNS.

5.3.3 Portability Considerations. Since C'++ programming language has
become more popular and supported as a progratuming environment, changing all

graphical modules of the ANNS system to C+4++ will enhance the portability.

5.4 Conclusions

In conclusion. this thesis documented the object-oriented design and imple-
mentation of the ANNS system. This work forms the baseline for future eflorts at
completing an integrated AFIT Neural Network Simulator (ANNS) that can help
teach neural network theories (from end-users point of view) and help research the

different kinds of neutal network paradigms (from dlient-programmers point of view).

The ANNS system is a multi-application tool which allows rapid study of scg-
mentation. vector quantization, and other Neural Network paradigins. According to
the literature review. there are only veny few versions of the neural network simula-

tor running on Sun workstations nowadays. As many organizations arc putchasing

commercial sofltware packages to perform these types of applications, making ANNS

97

system with all kinds of NN paradigin subsystems available could save the U.S. Air

Force thousands of dollars.

Appendiz A. ANNS User's Manual
A.1 Introduction

The AFIT Neural Network Simulator (ANNS) is a development and tuto-
rial system for the study and rescarch of artificial neural networks. It is also an
integrated and graphically interactive neural network paradigm simulation system.
ANNS allows the end-users to select the optional neural network paradigins and algo-
rithms for simulation, and allows the client-programmers to add new neural network
patadigms and algorithms to ANNS. This manual is primary for end-users; it
only describes how to use ANNS. Client-programmers should also refer to the ANNS
Programmer’s Guide for the overall ANNS implementation and general procedure

for adding a new ncural network paradigm to ANNS.

The ANNS system is intended to test f{cature extraction methods, compare
training paradigms, and help the user understand the limitations and utility of this
novel approach to computing. ANNS runs on Sun SPARCstastions using the SunOS
(Sun Microsystem’s version of the AT&T UNIX operating system) and OpenWin-
dow environment at Air Force Institute of Technology (AFIT). There are several
control mechanisms provided. including GO simulation, STOP simulation, RESET
all parameters, variable simulation SPEED, single simulation STEP, and QUIT the

simulation. Other {eatures include:

¢ a NN paradigm class selection from a list of available classes stored in the
paradigm library directory, such as back-propagation. hybrid training, radial

basts function. hopfield associative memory. clec..
¢ Dyvnamical simulations with color monitors.
¢ Multiple NN simulation windows. cach of which with one master control panel.

e Master control panel {or modifying the input parameters and control parame-

ters. and for monitoring the simulation status associated with each NN paradigm.

99

e Simulation environment save and restore capability.

¢ Simultaneous comparison and control of multiple Neural Network (NN) paradigm

and algorithm simulations.
e Provide on-line help for every interface function and window.
e Provide error window to illustrate the error surface.

¢ provide simulation status window to show the static simulation status at each

training step.

A.2 Backgrounds Needed for Users

This section presents some backgrounds related to the paradigms in the ANNS

system.

A.2.1 Ideas of Computer Gambling. The idea of using a computer to
predict the outcome of football games, horse races, or the stock market has fasci-
nated computer enthusiast since the beginning of the digital age. Before computers,
statisticians tries to relate measures of performance to probabilities of outcome using

multivaiiant linear regressions and Bayesian analysis. But does it work ?

A.2.1.1 Can computers predict winners ¢ The answer should lie in
your own common sense. One thing computers can do very well is calculate probabil:
ities of future events based on a record of past events. Before neural networks, those
calculation were complicated to say the least. But with neural network, algorithms
for static pattern recognition, and function approximation, nice implementation of
prediction systems are possible. More importantly, the user doesn’t have to know

the nitty-gritty detail to make things work.

Prediction is possible because neural networks relate inputs to output. With
a history of events, measurement of performance and a history of outcomes, it is a

simple matter to train a net to predict similar etvents. The prediction may be wrong,

100

but it can from the probability perspective, the most likely outcome. The trick is to
use the right inputs: Even the magic of neural nets cannot overcome the computer

age axiom, garbage in-garbage out.

A.2.1.2 Using the Artificial Neural Networks. Several type of predic-
tion problems have used neural network solutions: This involves what is called static
pattern recognition to predict probabilities and function approximation to predict

the behavior of indicators like the Dow-Jones Industrial Averages.

Using a neural network to compute these probabilities (and functions) is based
on two fortunate properties of the network. First, the output is base on a sigmoid
function which is a member of a class of functions know as conditional density
functions. The integral of the sigmoid function is a probability density function;

the work horse of probability calculations.

The second property is that the neural network can be treated as a black box.
The number crunching is always the same. The network training and propagation
rules are built into the computer program. All that is required of the user is to
prepare the input data; and turn the net loose. When the network has trained
enough to correctly identify the training data, simply propagate some unknown data

though the network.

Sound easy 7 Well it is: Only one problem remains, picking the right input
data. A few sample problems might be in order here, but first, you need a little

background.

A.2.1.3 Pattern Recognition-A Three Headed Beast. Pattern recog-
nition is three part problem, segmentation, feature selection and classification. Seg-
mentation is to remove the event from the background. It’s pretty easy for most
prediction problems, just read the paper. Event descriptions are right there. The

same is true for the feature extraction phase. Feature extraction is the process of

101

taking a meaningful measurement on the segmented event. Again, this is pretty easy,
since the paper is full of measurements which describe what took place at the event.

Words like batting average, and point spread come to mind.

Feature extraction has one small problem, the operative word is “meaningful”.
A measurement of sunspot activity near Mercury probably would not be related to
the outcome of a horse race. It’s easy for unrelated measurements to creep into the

pattern.

Pattern Recognition is 1o take a set of measurements of an event (a pattern)
together with a specified outcome, and predict the outcome for similar patterns

whose outcome is not known:

For a baseball game the pattern could be a set of numbers like the past win/loss
ratio, earned run average, team batting average and so on. The outcome would be,

(given the above information) winning or losing.

If the event is frozen in time, that is, a simple set of measurement and an

outcome the pattern is referred to as a static pattern.

Gambling can be performed in two manners: static pattern recognition and
function approximation. The first is an application which picks a winner based on
a set of measurements. The concept can be extended to include static pattern com-
parison. Pattern comparison would use the two sets of measurements, side by side,
more or less, to predict a winner. Function approximation takes a set measurement
and tries to estimate a actual number. The difference between the two might be
considered as the difference between, predicting the winner of a football game and
predicting the point spread. As you might guess, the second is quite a bit harder
than the first.

A.2.1.4 Static Pattern Classtfication. This section will examine three
types of problems, assignment of risk, generalized pattern classification; and com-

parative pattern classification.

102

Static pattern recognition works with a yes/no type of predictions. It would
answer questions like “Is this a good stock to buy or not 77 “Will this team go to the
supérbowl or not ?” The generalization of this is standard classification problems.

Given a set of measurement, assign each set to a particular class.

A.2.1.5 Function Approzimation. Function approximation takes a
pattern and tries to predict a future value of the function. Function approximation
has the advantage that it can use itself as the pattern. For example if one wanted to
predict the interest rates for next year, the input to the net could be time samples
of last years behavior of the interest rate function. At the same time, it could be
similar to a static pattern classification, except the output would be not bé yes or

no but an actual number.

Many have tried to use function approximation for prediction, based on past
performance usually reporting poor results. Those reporting good result are generally

trying to sell neural network models or acquire grant money.

Better results are usually obtained by including more information from past
petformance. One experiment predicted the stock market using a double input net
[11]. On one set of inputs a time history was used: On the second set of inputs,

market measurements were used, i.e. interest rates, GNP, and so on.

A:2.1.6 Erxample:Good Stock/Bad Stock. Procedure: Get a year old
newspaper and select a few hundred of your favorite stocks. Take the measurements

listed there, such as P/E ratio, cost, change or what ever you can get.

Now get current papers and classify each of the stocks that went up as class
one and those that went down as class two. Now setup your data file as shown in

the example data file in section A.4.1.

Allow the net to train until the best accuracy is obtained. Now use the test

functions to enter measurements for this years data.

A.2.1.7 Ezample:Predicting a Baseball Game. One example tried

with simulated data is to examine a number of baseball games[11]. First, an eight
entry wide feature vector is made. The first four positions are four measurements of
the skill of teani 1 (which played team two). The measurements are win/loss ratio
for the last ten garnes, team batting average, earned run average and season win/loss
ration. Team 2’s measurements went into the last four places of the feature vector.
Those numbers were :hosen because they were available in the newspaper. Since
the outcome of the games are known, it can be used to train the network. Here is a
case which can statistically normalize the data. On the pretend data the problems

seemed trainable over a wide range of noise added to vhe input.

The real problem is that under the right conditions, any team can beat any
other team regardless of the features used to train the net. So much of the data used

to train the net will be contradictory.

When a network is trained with contradiciory data, the output of the network
is much like a probability density function. For example, if there is a data set like

this (see data format example in section A.4:1):

N =N
(I
o o
NERY

0 1.0 0
0 1.0 1

.
.

(=]

The first training point says that the input pair (1.0,1.0) should map to an
output of zero. The second data point says, that it should map to a one. The result
is (usually) the output will go to 0.5 for both, which might be interpreted as a fifty

percent probability of being either outcome.

A:2.2 Multilayer Perceptron Paradigm. The multilayer perceptron is a
feedforward network based on the work of Paul Werbos, and working separately,
David Rumelhart and James McClelland [19]. A Muitilayer Perceptron network,
sometimes called backpropagation, takes a feature vector as input and tries to learn

a correct classification by adjusting the interconnecting weights between layers of

104

independent processing units. By presenting feature vectors and desired outputs to
the network, interconnection weights are adjusted based on an error term generated
by the difference between what is desired and what the net actually produced. The
computation elements for a neural network model are called perceptrons. NN comes
in a variety of flavors. The most common NN is the backpropagation perceptron, but
other comion types include Kohonen nodes, Counterpropagation nodes and Radial
Basis nodes. Some definitions refer to NN as always being backprop, here the term

will be used in a more general sense.

A.3 Getting Started

A.8:1 Set Path. Set your UNIX path variable to include the ANNS exe-
cutable directory. So far; there is only one executable ANNS in /home/hawkeye3/cwu/ANNS/bin
directory. Copying the executable ANNS to your own directory is strongly not rec-
ommended, because it consists of several executable subsystems and comsumes a lot

of memory space. Example of setting path:
set path=($path /home/hawkeye3/cwu/ANNS/bin)

A.3.2 The Mouse. The mouse is used for almost all interaction with ANNS.
ANNS specific uses are:

¢ Right Button: pop up menus and panel selectors
¢ Middle Button: not used
o Left Button: simulation control; panel buttons

The normal OpenWindows functions for the mouse buttons apply as well, such as
click (push and immediately release) or depress (push and hold until some action is

complete).

A.8.3 The Main Window.

UNIX prompt and hit “Return” key will come up with the ANNS main process

window. (See figure 43)

Figure 43. Main Window

106

After setting the path, typing ANNS at the

D
|

A.3.4 Iconify ANNS. This action causes ANNS and all simulations to
stop and become an icon. (See figure 44) The icon may be moved anywhere on the

screen. ANNS is deiconified by clicking the right mouse button on the icon image.

Figure 44: The ANNS Icon

A.3.5 The Main Menu. ANNS uses menus to allow users to make a
selection from among several choices. Users pop up menus by depressing the right
mouse button. Generally, menus remain visible only as long as the right button
remains depressed. While a menu is visible and the right mouse button is depressed,
moving the cursor over a particular menu entry causes that entry to be highlighted.
Releasing the right mouse button with a menu item highlighted selects that menu

1tem.

A menu entry with a right-arrow indicates that a pull-right menu is associated
with that menu item. Moving the cursor over the right-arrow exposes the pull-right
menu from which a selection can be made. Usually, the first item in a pull-right

menu is the default selection for an item with a pull-right menu.

Press and hold the right mouse button with the mouse pointer anywhere within
the ANNS main window to pop up the main menu. There are five choices in main

menu:

o Neural Network (NN) Algorithms Window

¢ Simulation Central Control Window

107

|
|
’
|
i
|

e Environment Control Window
e Exit ANNS

e Help

A.3.5.1 Neural Network (NN) Algorithms Window. To open a new
NN algorithm window, highlight the selection, “Neural Network (NN) Algotrithms
Window”. Move the cursor over the right arrow to reveal the NN paradigm class
menu. Highlight one of the available NN paradigms and release the mouse button. A
NN algorithm window with a defaiilt input parameters and NN algorithm simulation
window will appear on screen. The default input parameters are shown on the
configuration window by clicking the “Configuration Options” panel on the algorithm
window. If there is no change desired on the algorithm window (or master control
panel, see figure 45 and 46), simply click the GO panel item or click anywhere on
the simulation window, and then the simulation runs with graphical view display
on simulation window. (See figure 47 (Be sure the setup data file is in the same

directory as this simulation runs)

A.3.5.2 Simulation Central Control Window. Clicking this item,
the Simulation Central Control Panel will appear. This panel provides a means to

simultaneously control the simulations in all opened simulation windows. (See figure

48 and 49)

A.8.5.83 Environment Control Window. This selection causes the
Environment Control Panel to appear. This panel provides a means for saving the
current simulation environment, restoring a saved environment, or killing a saved
environment. The environment includes all users options currently selected: window
size, window placement, and NN algorithm parameters. The environment control

panel is shown in figure 50.

108

Figure 45. The ANNS Master Control Panel

109

B

by .ﬁz@; < S o
=.,. > \53,.- £ %

e

Figure 46. The ANNS Configuration Control Window

110

Sl RS SRR R S e, s A v:-.... B ARt
§ -xu\ s "‘%. -.\ 2 ‘-‘”‘k ey < Nt SRR v
s te S atlanii]
R 5 %&'s\ PN B *"“A:s~,

Mu tl ayer Neutak Net .
Desired Output

Ciass 1 Sample 2

File: xor. dat Acfua!Oufpuf
Evemplars 4/4

L

e

o Rans s

Test:Right ©000.00 TRA
Good 050.00

i

Average 1

-
£

S]

Count

i

H

M

Fasd
H

Right 000.00
050.00

o0l

Figure 47. Simulation Window

Gk, &*ﬁ,@-"%

HA-
f;*(ket

, el
S »'.;. i w%%wﬂm%‘ ‘-
T

e

Rt

Figure 4

11

X A
.»tﬁﬁ%i ‘

“R’ -\.--"w Qﬁw s

The ANNS Central Control Panel

e e

...
T
& -
S e
5
™ b
z £
K
m -3
= 2
[»] I
5z
€
>3 =
. 2
Q¥ NS
o &
I
A rid
W Rl oz

= m,.n\\. T

= §0 SR

pLE

e

LR e,

Yo Heens
oo

oy

e B

....
T

Rt

Moyt Mg *
T,

O g e 2
W

Ego o]

B Do

urat Net
2

Z

-

@

e

oo
HE LD

s

[o 00t

et

e e %
T, i

o
~»

o
A

NG
- Wy, -
~ B
= ¥
e
mm - 7
"
N TN
= "
g 8 I
Il -)
“ i
LRI B
ooam o ox
T [y B
-
[l
&N
&> o
B i
> D
& o
[
-
- R
& B
< &
& 3
- O
&, -
g e
i M, gt
< A e

Windows

101

o

ly Simulat

wo Simultaneous

Figure 49. 1

sms ¥re:m hit: Qmm'y* 3 ar**“'

R R TR ey,

C TN A
g s
CRESTOREY
FRAANANAAANNNNIINNIP NN

" =

. e
o e Can a "
!& «'r},
Xoa a u

W
e . "

RN
e

Figure 50. The ANNS Environment Control Panel

Ao Frd ANVNS, This item will end the simulations and exit

ANXNS. The user is first notified to comfirm the exit. {See figure 51)

A.2.5.5 Hcdp. This item displays a help window that brielly explains
the mouse actions. the function of each main menu item. and how to open a NN

algorithjmm window. (See figure 52)

A6 Master Control Pancl. Figure 15 shows the master contvol panel.

This panel is divided into several section depending on the type of NN paradigm.

¢ Control Section:
Provides several panel items for controlling the simalation. The HELP panel
item is for on-line help briefing discussing how to use this master contiol panel
and what the function is for each panel iten. The GO and STOP panel itemns
are for starting the simulation and pausing the simulation. The RESET panel
item is for re-setting all parameters. The QUIT pancl item is to kill the sim-
ulation and quit the master control panel. The "Show Nodes™ panel item
consists of a pull-down mena which indludes “All Nodes™. ~Lower, Weights™.
“Upper Weights™ . and ~Outpmt Weight<" menu items. Fach of menu items is

for displaving the present value of nodes during simulation. The ~Simnlation

Status Window™ panel itemis for showing the current status of simuolation, By

Figure 51. Exit Notification Window

114

AT AN

S

A o

A SHER Y

s S S T

e SRR
ok ARG

pRciERE

“‘:2 3 PRE:
o PN A,ﬂvi'ﬁg;}\ LY
-3

:
3 2
2 Py % B
FRaR e
Y o

LT
- o i~ N
L Gt LA aE e e Tl R
Sgiatian SASC e * :
gt ity
Lis R Y o A S MR
s - > el T
TR g
."'"? Wt ‘:‘yé.,,' P -‘v N
P z'gf 43 s
£ IR MIRT M W NN
~ LR R R
w i R IE R -
B ANGLHUANGIOR
T T SN
e, a !
- <1 %
el A

o Algerd thEs B

i $iagTativie fonfin

.

b

}I!Y‘i.'?‘?’f é{awm

s iy
PI-Gbet 51ag
Erivd rormeni-dont)
SO estkors, apNS,

pHéglavs th

AR £

i A
PRGN
tonlo ny

“Theitenty

clicking the “HIT ME” panel item, the Status Window will appear on screen
which displays all the values associated with the currently simulation status.
The “Simulation Speed” slide panel item allows user to control the variable
simulation speed, or select the “Single Step” panel item for step-by-step sim-

ulation.

e Algorithm Options Section:

A4

This section provides the user choice of NN algorithms for simulation. After
Changing the NN algorithms, The simulation associated the changed algorithm
does not take effect until the RESET panel item is clicked.

Error History Window Control Section:

This section is for showing the Error History Window or closing the Error
History Window. The Error History Window is a graphical window which dis-
plays the progress of the network as traing progresses. Also, after each display
cycle a tabulation is made to determine the percent correct for both training
set and the test set. If the output of the network is within 20 percent of the
desired calue for every node, a counter is incremented for the Right indicator.
If the highest output corresponds to the correct node for that test case the
Good counter is incremented. These values are displayed for the training and

test sets as a percentage correct.

Configuration Control Section:
This section is for input or change all kinds of parameters associated with the
NN algorithm. Different NN apradigms have different configuration parame-

ters.

Setup

The first step before simulating the NN algorithms is to set up the desired

network topology (if the default input parameters are not desired). Select the net

type, then type in the number of nodes (computational units) in cach hidden layer.

116

A weight file can be entered at configuration control panel. If there is no previous
file enter “t” for random weights to be generated by the system. This allows each
input exemplar to rerpresent a cluster of data. Make sure that if you try to restore
weights. the weights came from a similar problem. The size of the input and output

must be the same as when the weights were stored.

A.4.1 Setup Data Files. The training file contains all the data for testing
and training the neural network. The training file name is entered at the prompt of
“Data File” panel item on the configuration control panel. Try input files: xor.dat
and test.dat. A training file can be created as a standard ascii file using a standard

text editor.
The basic format is as follows:

The first line define the number of training vector pairs, the number of test
vector pairs, the number of input features, and the number of output classes: After
that, each exemplar is listed in order. The first number is arbitrary and ignored by
the program. The only purpose is to identify the exemplar number. Next list each
element of the exemplar vector x0,x1,x2 . . . x(input-1). The last eiement is the

exemplar class type.

Exemplar class types must be sequential. i.e. 1,2,3,... etc. The first class type
must be a one and no numbers can be skipped. Classes can be randomly mixed. To

allow flexibility. very little error checking is performed on the input file.

Example:
20 20 3 2
13.45.42.11
25.62.37.10
37.28.16.51
43.34.19.10

40 4.1 8:53.2 0

In the example above there 20 training exemplars and 20 test exemplars. This
first class must be labeled zero, the second labeled one etc. The test exemplars are
those set aside for testing the generalization capability of the net and are not used

in training. The input vector is of length three and there are two distinct output

classes:

A.4.2 Backpropagation Paradigm Input Parameter Options. The following

parameters adjust the network configuration before training:

e Saliency: You have three choices: Saliency Off, Weight Saliency, or Second

Order Saliency.

e Output Function: Choice of Squashed Output or Linear Output. The Squashed
output uses a sigmoid function, and the Linear output uses a linear function for
node mathematics (for an explanation of node mathematics, see Maj Rogers
and ask for a copy of the book: An Introduction to Biological and Artificial
Neural Networks for Pattern Recognition. [32)

e Output Format: Choice of Class Output, Binary Encode, Vector Output,
Identity Output, Identity w/Eigen, Hold One Out, RUCK, and TIME Sequen-

tial Data. In most cases use Class OQutput.

o Normalization: Choice of No Normalization, Statistical Normalization, En:
ergy Normalization, Spread Normalize, Fisher Linear Normalize, Karhunen=
Loeve Normalize, Karhunen-Loeve Mean, Principle Components, and Normal:
ize Outputs. Statistical Normalization forces all inputs to have the same rela-
tive ranges and thus is the preferred choice, unless you pre-normalize the data

before running Neural Graphics.

o Layers 1 2 3: The first entry should be the number of hidden nodes minus

one. For example, one hidden layer between input and output requires an entry

118

of two followed by a space. The next entry should be the number of neurons
or nodes as they are called in the first hidden layer. If you have more than
one hidden layer, put a space after the first hidden layer number and input the
numiber of neurons for the next hidden layer (moving in the input to the output
dircction). If you have only one hidden layer, enter the number of nodes in it

followed by a space and a zero.

Step At: To change the total number of iterations {not epochs), enter a
number on the keyboard. For example, when configired for 540 training vectors
and 60 test vectors, we would have 600 iterations foi each epoch. Multiply the
number of iterations by 20-50 times to get a first-cut approximation. You will
have to experiment to get désired results (a value that causes sufficient training

of the data, yet doesn’t over train on the data as indicated on the error curve).

Weight File: Click on this panel to input the name of the file that you want
to read weight information from. Type the name of the weight file on the
keyboard. WARNING: Leave the default file name ‘random’ under this panel
unless you have a weight file that you are importing (in the proper forimat of
course): If the prograim crashes, check to make sure ‘random’ is under this
panel! Note: A weight file is created every time you train a network; the file

created is named ‘weights.temp’. 7,

Data File: Click on this panel to input the name of the data file you want to

train from. Type the name of the file on the keyboard.

Statistics: Click on this panel to input the name of the data file you want to
train from: Type the name of the file on the keyboard. Network statistics will
be written to .his fiile which are important for plotting the total error versus

display updates. 7,

Average: This allows user to train through the data several times with new
random weights each time (the random generator is reseeded at the start of

each training session) and combine the results into an average. Click on this

panel and input a number at the keyboard: Usually we just train once, so

input a ‘1’ value.

o Learning Rate: Leave set to ‘1’; the code is ‘hard-wired’ to 1 over(no. nodes

fan-in).

e Display: This number represents how often the screen is updated with new
information during training and testing. To change this number, type the new

number at the keyboard. (start with about ‘1000°).

e Noise: Click on noise if you want to add noise to the data: A number greater
than zero will add noise (i.e., noise = 1 gives a random flat distribution). Zero
indicates no noise. As a suggestion, do not use noise on your first training

attempt.

A.5 Run simulation

Before a simulation is running, default values are supplied. To accept a default,
just hit the GO panel to start simulating the selected NN algoriuthm. The simplest
way to learn about the ANNS is just to accept all the defaults input parameters
which usually show up on the configuration control panel. Just hit GO panel, that
should get the default model running with reasonable default configurations. Try
testing each of the NN algorithms on the NN algorithm menu to see what happens.
Try rerunning the program with values other than the defaults. Use different sized
nets, different numbers of hidden layers, different weight files, different data files and

hit RESET panel and then GO panel to restart simulation.

Once, you feel comfortable making up your own net configurations, try some
real work. Make the computer learn something. You might want to start a multilayer
perceptron model, usually call backprop. Backprop comes in a variety of flavors, the
models used here are two of the most commonly used, backprop and conjugate

gradient.

120

Appendiz B. ANNS Programmer’s Guide
B.1 Introduction

The AFIT Neural Network Simulator (ANNS) is a development and tutorial
system for the study and research of artificial neural networks. It is also an in-
tegrated and graphically interactive neural network paradigm simulation system.
ANNS allows the end-users to select the optional neural network paradigms and
algorithms for simulation, and allows the client-programmers to add new neural net-
work paradigms and algorithms to ANNS. This manual is intended for client-
programmers; it describes the overall ANNS implementation and provides a gen-
eral guide for adding new Neural Network (NN) paradigms into ANNS. Before doing
that, Client-programmers should also refer to the ANNS User's Manual for better
understanding of the operations of ANNS. End-users should refer to the ANNS User’s

Manual.

The ANNS system is intended to test feature extraction methods, compare
training paradigms, and help the user understand the limitations and utility of this
novel approach to computing. ANNS runs on Sun SPARCstastions using the SunOS
(Sun Microsystem'’s version of the AT&T UNIX operating system) and OpcnWin-
dow environment at Air Force Institute of Technology (AFIT). There are several
control mechanisms provided, including GO simulation, STOP simulation, RESET
all parameters, variable simulation SPEED, single simulation STEP, and QUIT the

simulation. Other features include:

e a NN paradigm class selection from a list of available classes stored in the
paradigm library directory, such as back-propagation, hybrid training. radial

basis function, hopfield associative memory, elc..
e Dynamical simulations with color monitors.

e Multiple NN simulation windows, each of which with onc master control panel.

121

o Master control panel for modifying the input parameters and control parame-

ters, and for monitoring the simulation status associated with each NN paradigm.
¢ Simulation environment save and restore capability.

e Simultancous comparison and control of multiple Neural Network (NN) paradigm

and algorithm simulations.
¢ Provide on-line help for every interface function and window.
e Provide error window to illustrate the error surface.

¢ provide simulation status window to show the static simulation status at cach

training step.

B.2 Backgrounds Needed for Programmers

This section provides some recommendations for client-programmers to streugthen

the needed backgrounds for ANNS.

First of all. a client-programmer should have experience with ANNS as end-
users and be familiar with the terms and concepts associated with artificial ncuial

networks. then the following references are recommended:

o Programming with C [8]: Everything was written in C programming language

for ANNS.

o UNIX Operating System: ANNS is running on UNIX operating system envi-

roninent.

o Introduction to the X Window System [15]: What is X Window System ?

o XView Programming Manual [9]: The Graphical User Interface (GUL) of
ANNS was implemented using XView widget sets.

o SunVicw Programmer’s Guide [{7]: Some of the graphical routines of X View

were derived from SunView.

122

e Network Programming [43]: The concepts of using UNIX sockets for integrating
the ANNS system.

e SunOS Reference Manual [6]: ANNS is running on Sun Microsystem which
are controlled by SunOS.

B.3 Overview of ANNS

This section provides an introduction to several topics of interest to ANNS

programmers and NN paradigm simulation developers.

B.3.1 Olbjects Associated with X Window System. This section provides
ain object model (associated with ANNS system design) of the X Window System,
as an example to illustrate the concepts of object-oriented design and X Window
System. Figure 53 describes many object modeling constructs and shows how they

fit together into a large model.

Class Window defines common parameters of all kinds of windows, including
a rectangular boundary defined by the attributes 1, y/, x2, y2, and operations to
display and undisplay a window and to raise it to the top (foreground) or lower it
to the bottom (background) of the entire set of windows. Pancl, Canvas, and Text
window are varieties of windows. .\ canvas is a region for drawing graphics. It inherits
the window boundary from Window and adds the dimensions of the underlying
canvas region defined by attributes crl, cyl, cx2. cy2. A canvas contains a set of
clements, shown by the association to class Shape. All shapes have color and line
width. Shapes can be lines. ellipses. or polygons, each with their own parameters.
A polygon consists of an ordered list of vertices, shown as an aggregation of many
points. Ellipses and polygons are both closed shapes, which have a fill color and a
fill pattern. Lines are one-dimensional and cannot be filled. Canvas windows have

opcrations to add elements and to delete elements.

D ——

Window

x1.y1 x2.32

display
undisplay
raise
lower

" e N

Scrolling Canvas

wiidow

x-offset cx: ot item nanie
y-offset a2 o2

nolify -
event L bvent
add-element
scrofl delete-clement

(action
—— l?anel o ’
item
window beyboa
X event
) elcmgnls '
Shape label
] | i color
[h tine width
Text Seroli
. croliing
window [
canvas
string 4 Line ™y ﬁosed ~ pr—renannd . . N
i shape Button Choice Text item
Ly e
insert N fill color string item
S S L A2 max length
delete fill pattern depressed Ath
{_draw current string
’ {subset} -
PN SN) s—
current
‘ ‘ choice choices
4 ™\ s
i Choice
(Ellipse Polygon
entry
o string
draw
ab value
draw - —/
e —
vertices
Point
Xy
—

Text window is a kind of a Serolling window, which has a 2-dimensional scrolling
offset within its window, as specified by r-offsct and y-offsct, as well as an operation
scroll to change the scroll value. A text window contains a string, and has operations
to insert and delete characters. Serolling canvas is a special kind of canvas that
supports scrolling: it is both a Canvas and a Scrolling window. This is an example

of multiple inheritance.

A Panel contains a set of Pancl ilem objects. cach identified by a unique item
name within a given panel. as shown by the qualified association. Each panel item
belongs to a single panel. A pancl item is a predefined icon with which a user can
interact on the screen. Panel items come in three kinds: buttons. choice items. and
text items. A button has a string which appears on the screen; a button can be
pushed by the user and has an attribute depresscd. A choice item allows the user to
select one of a set of predefined choices. each of which is Choice entry containing a

string to be displayved and a value to be returned if the entry is selected.

When a panel item is sclected by the user. it gencrates an Fwenl. which is a
signal that something has happened together with an action to be performed. All
kinds of panel items have notify erent associations. LEach panel item has a single
event. but one event can be shared among many panel items. Text items have a
second kind of event. which is generated when a keyboard character is typed while
the text item is selected. Association keyboard crent shows these events. Text items
also inherit the notify cvent from superclass Panel itcm: the nolify event is generated

when the entire text item is selected with a mouse.

B.3.2 ANNS Architeclure. ANNS uscs three level of execution linked by
UNIX sockets to implement the NN simulation system. Figure 54 shows the idealistic
abstract model of ANNS and figure 55 shows the architecture of ANNS. Sockets are
the InterProcess Communication (IPC) mechanism provided by the UNIX operating

system. Each level is a self-contained. exccutable system. Without the sockets. cach

individual class system in the ANNS system could be run stand-alone. The three

levels of execution are:

Paradigm Paradigm
Class #] Class #n
<. [SRSEX IR o Al A e s e a'ee o T
Inputs Inputs
NN aradi ibrs NN
Algorithms Paradigm Library Algorithms
Graphical Graphica!
Views Views _

ANNS Systeni
Y
Environment Manager Library Manager
A A
Client-P: r
End-User Interface w;lme:gigc':mmﬂ

Figure 54. The Idealistic Abstract Model of ANNS

o The ANVNS mamn process.
The ANNS main process is the highest level interface to ANNS. Tt acts as
the environment manager and creates main process window. the main menu
window. the central control window. the environment control window. exit
window. help window and a means for starting NN paradigm simulations.

o The ANNS common library.
The middle level of execution is the NN paradigm-specific window-based pro-

cess called ANNS common library. Each NN paradigm component. interfaces

126

ANNS
. (mainQ) Help
Main .
Window wu]d()w
s L | | T
3 N -
—43 O3
. Central Environmen .
Main Control Control w[';":;
Menu Window Window ndow
> > > -l
I | 4 - I
O3 - O3
UNIX
Socket
Coﬁunén
Library (main())
Graphical View Help
Window i Master Control Window
Window
I I
s g% o
4 = 03
UNIX UNIX UNIX UNIX
Socket Socket UNIX - - Socket Socket Socket
more mofe
paradigms KOh()ﬂeﬂ paradigms
- Hopfield —_—
i Propagation Maps
I >) -) >
| - -
I - - | 03 O

Multilayer Perceptron

Hybrid Propagation

Sales Traveling Problem

Figure 55. The Architecture of ANNS at the Top Level

with the common library for simulatior control. The common library provides:
the graphical view windows for viewing the dynamically graphical display, the
master control window for monitoring and modifying the parameters that al-
fect the simulation, and the online help window for understanding the use of
all the parameters in the master control window.
o The ANNS paradigms.

This is the lowest level of execution which is transparent to the users. Each NN
paradigmm has three window associated with the ANNS common library. The
graphical view window is directly under the paradigm’s control. There is only
one NN paradigm (multilayer feedforward networks using backpropagation) im-
plemented so far. including eleven algorithms: Back Propagation, Back Prop
W/Momentum. Second Order Learning, Cotrell Identity Net, Tarr/Cotrell
Identity, Auto-Add a Layer, Gram Schmidt Network, Gram-Schmidt ID Net,

BrainMaker. Radial Basis. and Conic Basis.
B.3.3 Object Creating and Mapping Using X Vicw.

B.3.3.1 Objects in XView. There are ecight basic object types in
NXView. Three of these. Generic Objects. Windows. and Opcnwins are core classes
and are not directly instantiable by the user. The 1emaining five are discussed below.
The basic window entity is the frame. All other windows ate classified as subwindows

and must be attached to frames.

e Frames
A frame is the basic window object to which the programmer has access. There
are two {lavors. a base [rame. and a pop-up frame. A base {ramce is a {rame
with no parent. All other frames are subframes. so a pop-up is any frame
which is not the base frame. Each application has one base frame. There are

no {preset) limits on the number of subframes. A frame is characterized by a

border, which is managed by the window manager. and an interior which is

configured and managed by the programmer. The window manager controls
resizing, iconification. de-iconification, refreshing. quitting, etc. All XView

windows are framed.

Canvases

A canvas subwindow is the XView graphics window. It's size is independent of

the owning frame. The entire drawing surface is called the pant window and
the visible portion is the vicw window. Multiple. scrollable views of a canvas

are allowed within a frame.

Text Windows
A text subwindow provides basic text editing capabilities using the OPEN-
LLOOK text editing model. This window is a specialization of the canvas sub-

window with text editing capabilities added.

Menus

Menus are not actually XView windows, but they are bound to windows at
display time. XView supports a full range of menu types and options such as
pull-down, pop-up and pull-right. Menus can be pinned to allow them to stay

on the screen after the selection is made.

Scrollbars

Scrollbars are interesting objects. They can exist independently. or be attached
to subwindows. Scrollbars are windows (because they are visible) but they are
usually thought of as properties of subwindows. Scrollbars do not manage the
objects to which they are attached. it is the programmer’s responsibility to

make the screen updates associated with scrollbar actions.

Animportant feature of XView that is not a window is the Pancl. Pancls implement
the OPENLOOK control arca. Panels manage pancl itcms. c.g. buttons. sliders, text
fields. and other forms of inputting data. The motivation for panels is to provide a
mechanism for propagating events. especially for objects which do not have a window

associated them. Panels are very important in XView. For example. an application

129

frame with no subwindows attached cannot catch interior mouse events. Attaching

a panel to the frame allows these interior events to be propagated.

B.3.3.2 Object Creating and Mapping. XView provides a very clean
interface to it’s object setl. There is a common set of functions that allows users to

manipulate any objects by referencing the object handle. The functions are:

e xv_init():
Establishes the connection to the server, initializes the Notifier and the Defaults/Resource-
Manager database. loads the Server Resource Manager database, and parses
any genceric toolkit command line options. Called once at the beginning of the
program.
e xv_create():

Creates an object. Every XView object is created with this function.

e xv_destroy():

Destroys an object.

e xv_find():

Searches for and returns an object with the specified parameters. If none is

found. the object is created.

o xv_get():
Get the value of the specified attribute for the specified object.
o xv_set():

Set the value of the specified attribute for the specified object.

Using these six routines. programmers can create and manipulate the entire XView

object set for ANNS,

B.3.4 ANNS Dircclory Structurc. So far. the ANNS main directory struc-

ture consists of several subdirectorics which are (see figure 56):

130

ANNS

ANNSmain

bin include
ANNScommon

1 n
NN NN
Paradigm STTTTTTTTos = Paradigm
(BackProp)
(existing)

Figure 56. ANNS Directory Structure

131

B.3.4.1 ANNSmain Subdirectory. This sundirectory includes all the

source codes for the ANNS main process. It provides an environment in which all

NN paradigm simulations can be controlled. The files in this directory are:

ANNSmain.c
creates the ANNS main window and ANNS icon image, sets up the control

environment, and processes the mouse events.

ANNSUtility.c
contains subprogram modules to get the screen resolutions, dispatch the win-
dow events, filter the input characters, get the directory of input files, process

user warning cases, and create a color table.

ANNSmainmenu.c

creates ANNS main menu.

ANNScontrol.c

contains the functions for setting up and controlling a centralized simulation
control panel. This control panel is in ADDITION to the usual simulation
control provided by the specific NN algorithm class. The panel is OFF by
default. Activation has no effect on simulations other than providing another

means of control.

ANNSenvironment.c
contains the subprogramn modules to create ANNS Environment Panel and to

save and restore environments.

ANNSwindows.c
contains the functions for defining, opening, and closing NN algorithm win-

dows.

Each of these modules above has an individual header file with it for controlling

global parameters.

132

B.3.4.2 ANNScommon Subdirectory. This subdirectory presents an
interface for adding NN paradigms to ANNS by providing all the common modules
for each of NN paradigms. After compiling all the files in this directory, an ANNS
common library archive file called libANNS.a is created in the bin subdirectory for
next level of compiling and execution. The NN paradigm class simply provides the
simulation Interesting Events (IEs) which are operation components of the simulation
to connect to this common library. Figure 57 shows the communications of the IEs

between a NN paradigm class and this ANN common library.

_NN Paradigm Componen ______/ANNS Main Process
b IE — T i (Simqlation i
E | Generator ! : GO :
; - ‘:E if IE=END | ———
' ! ' Simulation 5
: |__ Process | ; : END :
: Simulate E E Get] E
i | Neural Net ; E IE i
E : i Update !
: Graphical : ' IE '
E View E : 7 E
E Geneltatof 4\:‘\5\ Update E
! E : Simulation i
E ' E Status '
i Graphical View Window E

Figure 57. The 1Es Communication Model

The files in this directory are:

133

o ANNScommon.c

is a basic shell for all NN algorithm simulation packages. Each NN paradigm
simulation links to this file. This file provides the main routine, establishes
the communications link to ANNS, creates the master control panel, simu-
lation status window, error history window, and simulation canvas. Client-
Programmers simply provide NN algorithm, and operation components of the

simulation (IEs) which link to these functions.

ANNSparameters.c

contains all subprogram modules to read simulation parameters, save simula-
tion parameters, restore simulation parameters, and send all the simulation pa-
rameters to ANNS. All parameters depend on the NN paradigm class-specific
interesting event structure (IESTRUCT). IESSTRUCT is referred to as an
ADT, but its internal structure is not important. The NN paradigm class-

specific functions must provide a macro or a function to copy IE.SSTRUCTs.

ANNSmaster.c
contains subprogram modules to create master [rame, set up control section
of the master control panel, set up simulation status window, and get all the

control parameters.

ANNSgraphicalView.c

contains subprogram modules to set up the simulation canvas. handle 1Ls.
simulate NN algorithm, control simulation speed, control multiple graphical
view window.

ANNSUtility.c

contains subprogram modules to get the screen resolutions, dispatch the win-
dow events, filter the input characters, get the directory of input files, process

user warning cases, and create a color table.

Each of these modules above also has an individual header file with it for

controlling global parameters.

134

SART A S R T R T e A ARe = TR Sy T mne A e e T T REamems Tt AR T R T e A A

B.3.4.3 bin Subdirectory. This subdirectory contains all the exe-
cutable files, archive files (common library), and onc ANNS NN paradigm class file
called .annsParadigms. The .annsParadigms file lists all the available NN paradigm
components and the names of executable files for cach NN paradigm component.
Client-programmers must add the name of the new NN paradigin component and
the name of the executable file (associated with this new NN paradigm component)
to .annsParadigms file. ANNS need not be recompiled if this file is modified. This
file will be called when the ANNSmainmenu.c is executed. The .annsParadigms file

is shown as follow:

Multilayer Perceptron Network, /home/havkeye3/cwu/ANRS/bin/Test

Hopfield Net , /home/havkeye3/cwu/ABES/bin/HopEet
Hybrid Propagation, /home/hawkeye3/cwu/ANNS/bin/Hyblet

Kohonen Maps, /home/hawkeye3/cau/ANNS/bin/Kohonen

Salese Travel Problem, /home/havwkeye3/cwu/ANNS/bin/TSP

/xs*xx5x Format for Above **xsxxss/
(1) List the name of a new HN paradigm, followed by a comma, and the name of
the executable file. Only one NN paradigm per line

(2) After tilde “~* , nothing is read
/‘“‘tt#“t‘t“#t#‘tt‘t‘t‘“‘l“‘ﬂ‘#t‘t‘t‘*“t‘#“‘ttt‘tt‘ttttttttt#‘t*‘

* AFIT Feural Network Simulator (ARNS)

* DATE : 13 Feb 1993

* VERSION: 1.0

* HAME - .annParadigns

* MODULE BUMBER:

* DESCRIPTION : This file consists of a list of the NN algorithm

* components available to ANES

* There are two lists:

* (1) .paradigmName = The name of each NN paradigm; used
* in menus and as the window titles
* (2) .executableFile = The name of an executable file
* for the specific NN paradigm; used by
* ANNS to execute a simulation.
* The Client-Programmer must update this file when a new BN paradigm is
* added to the ARNS system. ANHES need not be recompiled if this file 1s
* modified.
* ALGORITHM:
* PASSED VARIABLES: None
* RETURNS: Nothing
.‘*ttitt‘t#‘tttt‘tt#t‘ittl#i“‘ttt‘tttt‘l*“#t‘ii#t##“##“‘l'ttttit‘tt/

B.3.4.4 include Subdirectory. This subdirectory contains header

files, and icon image files for ANNS.

o annsDdfines.i contains all included system header files and predefined con-

stants.

o commonDefines.h contains defines and types shared by all the “paradigmCom-

mon” and “paradigmSpecific” functions.

B.} General Procedure for Adding a New NN Paradigm

A existing NN paradigm class is probably the best guide for adding a new
NN paradigm to ANNS. Client-programmers may take the existing NN paradigm
directory, like BackProp. as an example. Assuming that a client-programmer has a
NN paradigm coded in C' language (graphical routines was coded using XView), the

following sections are suggested procedure for adding the NN paradigim to ANNS:

B.4.1 Creale a working dircctory. There is a template directory. called
newParadigm, in the ANNS main directory. Use this directory as a guide for de-
velopment by copying this directory and changing the name of this directory to the
new paradigm’s name under the ANNS 1nain directory. There are totally seven files
in this template subdirectory: Makefile, NewParadigm.h, BG_main.c. Algorithms.c.
GraphicalView.e. and Control.c. and Inilial.cBesides these files, add all the source

files of the new NN Paradigin to this directory.

1. Makefile is an utility for lowest level of compiling. The example of Makefilc is

as following:

BEXARRAAEEERRRR R RN RN RA AR KRR AR AR R RRR R SRR R R R R R RN ER R KSR
* FILENAME : Makefile

% DESCRIPTION : Makefile fou the Hew HN paradigm

BB ERERERRRE AR RS E AR KRR R AR AR R KRR R AR AR KRR R Rk

ParadigmNAME = HNewParadigm
BERRSRRRRAREREERRERE R AR R RRE AR RNk AR KR Rk

#Set the base path to the directory in which the executable will be stored
BEREERRRRREE R AR R RS RN RR R R R AR R R R AR R R K KRR

BASE = $(HOME)/ANES

BIN = $(BASE)/ban

INCLUDE = $(BASE)/include
ParadigmPRG = $(BIN)/$(ParadignNAME)
ParadigmBG = $(BIN)/$(ParadignNAME)BG

LIBS = -Bstatic ~lnet -1ANNS -lxview -lolgx -1X1i1 -lsuntool -lsunwindow -lpixrect -lm

CC = cc

136

CFLAGS = ~I$(INCLUDE) -I$(OPENWINHOME)/include -L$(OPENWINHOME)/1ib

LDFLAGS = -L$(BIN)
DEPFLAGS = -MM $(CFLAGS)

REXAR R AR AREERR R KRR R R R AR R R R AR AR R R KRR R AR KRR SRR
* BewParadigm files
REREERRESRRRRRAASRREERRREE KRR KRR ER AR R R R R R AR R R KRR R KRR

% add New NE paradigm object files here --like the Backprop paradigm

BewParadigm0BJS = GraphicalView.o Algorithms.o Control.o Initial.o

HewParadigmOBJS = GraphicalView.o Algorithms.o Control.o Initial.o backprop.o \
backprop2.o backprop3.o radial.o backprop8.o conjugate.o \
preprocess.o batch.o cluster.o backprop4.o backprops o \
backprop6.o backprop7.o poly.o random.o normal.oc test.o \
jacobi.o nrutil.o eigsrt.o invert.o lubksb.o ludcmp.o\
gaussj o initialize.o makeinput.o paradigm.o saver o \
general.o display.o graphic.o

* add New NN paradigm files here --like the Backprop paradigm

#NewParadigmSRCS = GraphicalView.c Algorithms.c Control ¢ Initial.c

NesParadigmSRCS = GraphicalView.c Algorithms.c Control.c Initial.c backprop ¢ \
backprop2.c backprop3.c radial.c backprop8.c conjugate.c \
preprocess.c batch.c cluster.c backprop4 ¢ backprop§s ¢ \
backpropb.c backprop?.c poly.c random.c normal.c test.c \
jacobi.¢ nrutil.c eigsrt ¢ invert.c lubksb.c ludcmp c\
gaussj.c initialize ¢ makeinput.c paradigm.c saver.c \
general.c display.c graphic.c

BGOBJS = BG_main.o
BGSRCS = BG_main.c

SRCS = $(NewParadigmSRCS) $(BGSRCS)

0BJS = $(BewParadigmOB3S) $(BGOBIS)

REESEHRRREERRREERERR AR E AR KR ERR R R KRR A R AR R RS R TR A
* Compiling rules
BEEFREKXKERREEEEREE R AR R R KRR KRR R AR AR R R KRR E R KRR R

$(ParadigmNAME) : $(ParadigmPRG) $(ParadigmBG)

$(ParadigmPRG): $(NewParadigmOBJS) $(BIN)/1ibABNS.a $(BIN)/libret.a
$(CC) $(CFLAGS) $(LDFLAGS) -o $(ParadigmPRG) $(NewParadigmOBJS) $(LIBS)

$(ParadigmBG): $(BGOBJS)
$(CC) $(CFLAGS) $(LDFLAGS) -o $(ParadigmBG) $(BGOBJS) $(LIBS)

Control o: Control.c Makefile
$(cC) $(CFLAGS) -¢ Control.c -DBGFILE=’"$(ParadigmBG)'’

NewParadigm.h
is a header file for defined global parameters and defined constants (add what

the New Paradigm has to this file).

is the main background procedure that drives the graphical display by selecting

{ 3. BG_main.c

one of the algorithms and delivering interesting event (1I2) atinouncements to

the evoking routine on request. The example file is as {ollowing:

* AFIT Heural Betwork Simulator (ANES)
FILENAME : BG_main.c
FUBCTIONS:
main() - establishes IPCs. Accepts parameter
structure from the main algorithm routine.
INTERESTIRG_EVERT() - IPC function; sends the IE operations to the
main algorithm routine, after a raequest has been received.

l /tt#t‘#t###“‘##tttt#tttt‘lttt##i#t#"tt‘tttttt‘t“l“llt‘t##tt!tttt‘ttt

L R I R R 2 R

3“#““tttt#ti##tt;t#t#ttt“ti‘tttttlttitttttttt*“t‘t*t*‘tt*tttt!tttt/
#include <sys/types.h>
#include <sys/socket.h>
#include “BewParadigm.h"
/t#t‘ttttt#t#tttlt‘*tt‘tt#ttt‘itt$t*‘t‘#**“#ttt“t*‘t#ttttt*i#ttt‘#*tti
s FURCTION NAME : main()
* DESCRIPTION:
* Evoked by ANES main process.
ﬁ#tt‘#t‘#li*ttttttt#t#t‘“‘ttt‘#ttttt*‘ttt*‘lt*ttlt*‘ttttt"tt**t#ttttt/
main(argc, argv)
int argc,
char =argvi],
{
int socket;
void INTERESTIRG EVERT();
IBIT_PAK parameters;
int count=0,stop1t=10000;
wnt avg,avgs=50,

cocket = atoi(argv{1]);

1f(read(socket, ¶meters, sizeof (INIT_PARK)) < 0)
{
perror(“BG(1) reading control parameters'); exat{23);
}
/+#xx A1) algorithms for BackProp paradigm componentxxxs/
switch(parameters.algorithm[P_ALGORITEM})
{
case BACKPROP:
init_paradigm = init_train_BACKPROP;
break;
case BACKPROP2:
init_paradigm = init_train_BACKPROP2;
break;
case BACKPROP3:
init_paradigm = inxt_train_BACKPROP3;
break;
case BACKPROPG:
1nit_paradigm = init_train_BACKPROPG;
break,
case BACKPROPS:
wnit_paradigm = init_train_BACKPROPS;
break;
case BACKPROP3:
in1t_pa:adigm = init_train_BACRPRGPI;
break;

case BACKPROP10:
init_paradigm = init_train_BACKPROP10;
break;

case BACKPROP_GS:
init_paradigm = init.train_BACKPROP_GS;
break;

case BACKPROP_GSID:
init_paradigm = init_train_BACKPROP_GSID,
break;

case BACKPROPC:
init_paradiga = anit_train_BACKPROPC;
break;

case RADIAL:
init_paradigm = init_train_RADIAL,
break;

case preprocess:
init_paradigm = init_train_preprocess;
break;

case BRAIN:
init_paradigm = init_train_BRAIN;
break;

default.
perror(" Unknown algorithm for BackProp Paradigm"); exit(25);

}
/*** display the title "Multilayer Pexceptron'#*s/
IRTERESTING_EVERT (socket, INIT);

for(avg=1;avg<=avgs;avg++) {
IBTERESTIRG_EVERT (socket, Initialize_Net):

for(count=0;count <stopit;count ++){
IRTERESTING_EVENT(socket, Hake_Input);
INTERESTING_ _EVEBT(socket, Propagation);
INTERESTING_EVEBT(socket, Train_Ket);
INTERESTING_EVENT (socket, Display.Bet),
}
INTERESTIRG_EVENT(socket, FIEAL);

}

INTERESTINRG_EVERT(socket, DONE);

INTERESTING_EVENT (socket, BG_WAIT);

}
/*t###t#t##t#t#ttttt!t*ttttttt##ttt#t‘t‘tttt‘ttttttttt#t#tttt##ttttttt't
* FUNCTION NAME : void INTERESTING_EVENT(int, int, int, 1nt)
* DESCRIPTION:
* Receives an Interesting Event argument, waits on a
* IErequest from the ANNS main process, sends the IE operations.
* INPUT PARAMETERS:
* socket - plug in main process
* type - type of event
* OUTPUT PARAMETERS:
*

write IE_DATA to main algorithm process
t#“ttttl"‘““‘ttt‘tit"#tl##‘#t‘“‘#“t"tttt““‘t“tt‘l‘t#t“‘#‘#t/
void INTERESTING_EVENT(socket, type)
int socket, type;
{
IE_DATA IEpacket;
int IErequest;

if(read(socket, &IErequest, sizeof(int)) < 0)
{

perror{("Waiting for IErequest™); exit(20);
}
if(IErequest == BG_QUIT)

exit(0);

139

IEpacket.type = type;
if(write(socket, &IEpacket, sizeof(IE_DATA)) < 0)
{
perror(“Writing IE operations"); exit(22);
}
}

4. Algorithms.c

contains functions which manage the NN algorithm parameters for the NN new

paradigm class of algorithms. The example file is as following:

/tt##‘t‘lttt#tttt#t"#*tﬁ###‘tttl*‘t*'t#t‘#tt‘ttttt#tt‘#tli“*tttt'ttttt
* FILE : Alg.c
* DESCRIPTION : This file contains functions which manage the NN

* algorithm parameters for the BackProp class of algorithms.
* FUBCTIONS :

* int addAlgorithmSection(Panel, int)

* void getAlgorithmParameters(PARAMS)

* void setAlgorithmParameters(PARAMS)

* char #setAlgorithmName()

Qt‘t‘#tttttt#‘tttt#t#t##‘t“‘t*l‘tt#‘t“ttl‘ttt'.#i#*‘t“ttttt#‘#tt#‘*‘/
#include "NewParadigm.h"
static Panel_item algorithmItem;
/’ttt#tt#i‘t#‘t*!tt#ttt#t‘tt##tﬁt*###‘t“‘###*#t#‘ttt“‘*#*t*tt###tt*“l
* FUECTION NAME : int addAlgorithmSection(Panel, int)

* DESCRIPTION : Adds to the Master Control Panel the items that

* control algorithm parameters.

* INPUT PARAMETERS :

* panel - the panel to which the items are added

* row = the panel row on which the items begin

*« QUTPUT PARAMETERS :

* row - the panel row on which the next panel item should begin

tt#“ittt".‘tl‘t"#‘tt‘ttttt#tt*#‘#t““#ttQttt#tt#“##'lt.#tt#t*tiit‘/
int addAlgorithmSection(panel, row)
Panel panel;

int row;

{

(void) xv_create(panel, PANEL_MESSAGE,

PANEL_NEXT_ROW, -1,

PABEL_LABEL_BOLD, TRUE,
PANEL_LABEL_STRING,
Hommvmmm o e et ALGORITHM GPTIORS -----==-r--m——eww- ",
BULL) ;

algorithmItem = xv_create(panel, PANEL_CHOICE,
PANEL_NEXT_ROW, -1,
PANEL_DISPLAY_LEVEL, PANEL_CURREST,
PANEL LABEL_STRING, "Algorithm Type :",
PANEL_CHOICE_STRINGS, "Back Propagation",
"Back Prop W/ Momentum",
"Second Order Learning”,
"Cotrell Identity Het",
"Tarr/Cotrell Identity",
"Auto~Add a Layer",
“Gram_Schmidt Network",
“Gram-Schnidt ID Net®,
"BrainMaker",
"Radial Basis",
"Conic Basis",
RULL,
PAREL_VALUE, 0,

140

[V -

RULL);
return(row+4) ;
}
/‘t#‘#tt!#tt“tttt‘!‘1t‘##“"‘ll#““.““#t#‘t‘*t‘ttt##‘#‘t‘l‘t“###t#
* FUNCTION NAME : void getAlgorithmParameters(PARAMS)
DESCRIPTION : Saves the current algorithm parameters.
INPUT PARAMETERS . parameter - PARAMS array
OUTPUT PARAMETERS : None
GLOBALS USED : algorithmitem
FUBCTIOBES CALLED: xv_get()
tt#tttttﬁ“'t#‘ttttt#t“tttt't"t‘#t*“t"#tt‘t#t‘tttt#“#"“‘#“tttti/
void getAlgorithmParametexrs(parameter)
PARAMS parameter;
{ int algorithm;

* # B * ®

algorithm = (int)xv_get(algorithmItem, PANEL_VALUE);
parameter [P_ALGORITHM] = (ant)xv_get(algorathmItem, PANEL_VALUE);

}
/#tt‘ttt#“‘“‘“"‘““*l“"##tt“#t#ttttt#t#‘#tlt‘*t“‘l‘#.‘tttttt###
FUNCTIOR BAME : void setAlgorithmParameters(PARAMS)
DESCRIPTION : Sets the algorithm paramters after a restore operation.
GLOBALS USED : algorithmltem
GLOBALS AFFECTED : sets value of algorithmItem
FUNCTIONS CALLED: xv_set()

"""‘"‘“"“."!**#‘tItt‘ii‘tt"“.“#tttt*‘t#t“tt“t""!t*“'t‘t/
void setAlgorithmParameters(parameter)
PARAMS parameter;
{

»*

* % O »

xv_set{(algorithmItem, PANEL_VALUE, parametex{P_ALGORITHM], NULL);
}

/"t"#‘t“t*“*‘#‘#‘####*ttt*#tt‘t#"tt*tt#ttt“t*‘t‘#‘t#t"‘ﬂl*““‘ti
* FUNCTION NAME : chars getAlgorithmName()

DESCRIPTION : Provided so that the common setAlLgWindowTitle() function

can get the algorithm name without any global naming conventions.

INPUT PARAMETERS : Hone

OUTPUT PARAMETERS : pointer to string (algorithm name)

GLOBALS USED : algorithmItem

GLOBALS AFFECTED : None

CALLED BY : setAlgWindowTitle()

FUNCTIONS CALLED: xv_get(), panel_get()
‘##t##t#“t‘*#tt‘i"#‘““‘!t“tt*‘***‘#tt#ttt‘.‘tt't“tt#““*##t##ttt/

char* getAlgorithmName ()

L K IR IR R 2 2K B 3

{

int algorithm;

algorithm = (int)xv_get(algorithmItem, PANEL_VALUE);

return{{char *)xv_get(algorithmItem, PANEL_CHOICE_STRING, algorithm));
}

Graphicalltew.c

processes [Es, paints all graphical views on simulation canvas, and updates

the simulation status. This is the most important file for Client-programmers.

The functions that client-programmers need to modify are addConfigScction().

update Nel() and updatcStatus(). The example of the update Nel() function that

I41

need to be modified is as following (Compare this functions with BG_main.c

for understanding of the I3 processes.):

/#"*tt“*“#“##i#t‘t##‘##“tttt“tt“ﬁtt't‘t‘tt‘##tttt‘t##tt““tl“#‘
* FUNCTIONE NAME : void updateBet(int, int, Pixwin)

* DESCRIPTION : Updates the graphical view
‘l#‘t“‘“l#tttlttttttﬁt‘t‘tﬁlt#tt##“ttt#‘tttt#t##ltttttlt“‘t‘#ttt‘t‘/
extern nnet #*net;

extern int which_exemplar;

extern setup BPparameters;

void updateNet(type,thePixwin)

int type;

Pixwin sthePixwin;

{

switch(type)
{

case INIT:
/*#xx CLEAR THE CANVAS #*x¥x/
pu_rop(thePixwin, 0, O, NetWidth, HNetHeight,
PIX_SRC | PIX_COLOR(WHITE), BULL, 0, 0);
pv._.text (thePixwin,5, 10,
PIX_SRC | PIX_COLOR(BLUE), NULL, “Multilayer Heural Net");
break;
/***These cases call NN operation functionss*ssxs/
case Initialize_KNet-
INITIALIZE(TRUE);
break;
case Make_Input:
MAKE_INPUT(net->inp, net->doft,which_exemplar);
break;
case Propagation:
FEED_FORWARD() ;
break;
case Train_RNet:
TRAIN_BETQ);
break;
case Display_HNet-
/+*#+x CLEAR THE CARVAS *#xx/
pw_rop(thePixwin, 0, 0, NetWidth, NetHeight,
PIX_SRC | PIX_COLOR(WHITE), NULL, 0, 0);
pv_text(thePixwin,10, 10,
PIX_SRC | PIX_COLOR(BLUE), BULL, "Multilayer Neural Net");
DISPLAY_RET(thePixwin);
break;
case FINAL:
hold_one_out();
file_saliency(0);
do_avg(),
write_calvin_weights(“weights.calvin"),
break;

6. Initial.c and Control.c
Initwal.c contains the global data declarations needed by the paradigm class
common routines. Control.c consists of functions to control the execution of

the simulation: the control panel, IPC' with ANNS, and IPC with the main

142

algorithm background procedure. Client-programmers only need to modify the

name of the included header files in these two files.

B.4.2 BackProp Subdirectory. This directory is an example of NN
paradigm component. Client-programmers may take this as an example for adding

new NN paradigm to ANNS. Figure 38 shows the module diagram for the BackProp

paradigm.
. Multilayer Initialize_Net
Interesting Perceptron
Events Neural Network]
Handler (BG _main()) »)
| -
11
(::> - ——
[:: | M
- \ Make_Input
UNIX]
Socket
Connector
>
I
043
T?Ep@y
Algorithm o View
Selector
> - -l))
4 3 I - O
] M T O/
I i L

Figure 58. Module Diagram for BackProp NN subsystem
In pseudo-code the general flow of the BackProp paradigm is shown below:

begin

INITIALIZE

loop {
MAKE_INPUT
PROPAGATE
TEST
TRAIN_NET

143

DISPLAY_NET
Event Handler}
end loop
end

144

Appendixz C. ANNS User Evaluation Form
C'AD-Tool Human-Computer Interface Evaluation!

Name (administrative use only):

Estimated time spent with tool/system

Do not write in these spaces

Tool Evaluated:

Class:

Group:

Exper:

First:

ID#:

PLEASE READ BEFORE PROCEEDING:

The following questionnaire is designed to provide user feedback
on the human-computer interface of the specified computer-aided de-
sign (CAD) tool. Through your responses, we hope to measure your
degree of satisfaction with the tool, with primary emphasis on the
“user-friendliness” of the human-computer interface.

The questionnaire consists of a set of 11 factors, plus an overall
rating. We will determine your satisfaction with the tool based on
your response to six adjective pairs used to describe each factor. Each
adjective pair has a seven-interval range where you are to indicate your
feelings with an “X”. Responses placed in the center of the range will

'C S Awr Force Institute of Technology. AFIT/ENG

indicate that you have no strong feelings one way or the other, or that
you cannot effectively evaluate that given factor.

Evaluation begin time

116

1. System Feedback or Content of the Information Displayed. The extent to which
the system kept you informed about what was going on in the program.

Comments:

Comiments:

duced errors.

To me this factor is:

unimportan([E [2 T{ { ‘

147

insufficient sufficient
unclear clear
useless useful
had good
unsatisfactory satisfactory
To me this factor is:
unimportant [| | T |] | | important

2. Communicalion. The methods used to communicate with the tool.

complex simple
weak powerful
bad good
useless useful
unsatisfactory satisfactory
To me this factor is:
unimportant | | | | | [[| important

3. Lrror Prevention Your perception of how well the system pievented user in-

bad | good
insuflicient sufficient
incomplete complete
low high
unsatisfactory satisfactory

important

Comments:

I
3%

recover {rom user induced errors.

unforgiving

incomplete

complex

slow

unsatisfactory

To me this factor is:

unimportant | | | | | | | |

Comments:

ot

Documentalion. Your overall perception as to the

useless

incomplete

hazy

insuflicient

unsatisfactory

To me this factor is:

. Error Recovery. The extent and case with which the system allowed you to

forgiving
complete
simple

fast
satisfactory

important

usefulness of documentation.

useful
complete
clear
sufficient
satisfactory

unimportant | | [| |] |important

Comments:

6. Lrpectalons. Your perception as to the services provided by the system based

on your expectations.

displeased

low

uncertain

pessimistic

unsatisfactory

148

pleased
high
definite
optimistic
satisfactory

To me this factor is:

unimportant | | | [] | | | important

Comments:

7. Confidence i the System. Your feelings of assurance or certainty about the
services provided by the system.

low high
weak strong
uncertain definite
bad good
unsatisfactory satisfactory

To me this factor is:

unimportant { | | T | | | | important

Comments:

8. Fasc of Learning. LEase with which you were able to learn how to use the
system to perform the intended task.

difficult T casy
confusing 7) clear
complex simple
slow fast
unsatisfactory satisfactory

To me this factor is:

unimportant | | | [| | | | important

Comments:

9. Dwsplay of Information. The manner in which both program control and data
information were displayed on the screen.

149

confusing
cluttered
incomplete
complex
unsatisfactory

To me this factor is:

unimportant{ l I] [! } }

Comments:

clear

well defined
complete
simple
satisfactory

important

10. Feeling of Control. Your ability to direct or control the activities performed

by the tool.

low
insufficient
vague

weak
unsatisfrctory

To me this {actor is;

unimportantl l l (l 1 I 1

Comments:

high
sufficient
precise
strong
satisfactory

important

11. Relcvancy or System Uscfulness. Your perception of how useful the system is

as an aid to a software developer.

useless
inadequate
hazy
insufficient
unsatisfactory

To me this factor is:

useful
adequate
clear
suflicient
satisfactory

unimportant rI I [i [l limportzmt

Comments:

12. OQuerall Evaluation of the System. Your overall satisfaction with the system.

unsatisfiedl l i l l } I Isat.isﬁed

{cont’d)

Comments on the Overall System:

. ——
Evaluation end time|: i

Total time spent on evaluation [: |

Thank you for your help.

Appendiz D. The ANNS Source Codes

o

o]

10.

11.

13.

1L

16.

17.

Bibliography

. Bochm. Barry W. *A Spiral Model of Software Development and Enhance-

ment.” IEEE Computer, 61-72 (May 1938).

Booch. Grady. “Object-Oriented Development.” IEEE Transaction on Softwarc
Engineering. SE-12:211-221 (February 1986).

. Booch. Grady. Softwarc Componcnts with Ada. Menlo Park CA: The Ben-

jamin/Cummings Publishing Company. Inc. 1987.
O « ¥

. Booch. Grady. Softwarc Engincering with Ada (Second Lidition). Menlo Park

C'A: The Benjamin/Cumimings Publishing Company, Inc. 1987.

. Booch. Grady. Objeet Oriented Design with Applications. Redwood City CA:

The Benjamin/Cummings Publishing Company. Inc. 1991.

. EVB Software Engineering. Inc. An Objeet Oricnted Design Handbook. EVB

Software Engineering, Inc. 1985.

. Garth. S. A Dedicated Computer for Simulation of Large Systems of Neural

Nets.” Neural Computers. 4135444 (Springer 1939).

. Gottfried. Byron S. Programmung with C. New York. New York: McGraw-11ill

Publishing Company. 1990.

. Heller. Dan. XVicw Programming Manual. Sebastopol CA: O Reilly & Asso-

ciates, Inc. 1991.

Henderson-Sellers. Brain and Julian M. Edwards. ~“The Object-Oriented Sys-
tems Life Cycle.” Communications of the ACM . 33:142 - 159 (September 1990).

Huang, W. Y. and R. P. Lippmann. “Neural Net and Traditional Classi-
fiers,” Procccding of the Conference on Neural Information Processing Systems
(November 1987).

Humphrey, Watts S. Managing the Softwarc Process. Massachusetts: Addison-
Wesley Publishing Company, Inc.. 1989.

Jean, Catherine and Alfred Strohmeicr. “An experience in teaching OOD for
ADA software,” Software Engineering Notes, 15:44 — 99 (October 1990).

Johnson, Eric FF. and Kevin Reichard. X' Window Applications Programming.

Portland: MIS Press, 1989.

. Jones, Oliver. Introduction to thc X Window Sysicm. Englewood Cliffs NJ:

Prentice Hall. 1989.

Kernighan. Brian W. and Dennis W. Richie. The C Programming Language.
MA: Prentice Hall, Inc. 1988.

Koivunen, Marja-Ritta and Martii Mantyla. “HutWindows: An Improved Ar-
chitecture for a User Interface Management System.” [EEE Computcr Graphics
and Applications. 43 - 52 (January 1988).

33.

Korson, Time and John D. McGregor. “Understanding Object Oriented: A Uni-
fying Paradigm,” Communications of the ACM, 33:40 — 60 (September 1990).

. Lippmann, Richard P. “An Introduction to Computing with Neural Nets.”

[EEE ASSP Magazine (April 1987).

. Lowgren. Jonas. “History. State and Future of User Interface Management

Svstems.” SIGCHI Bulletin. 20:32 - 44 (July 1988).

. Mackie. S.. I1.P. Graf and Schwartz D. B. “Implementations of Neural Network

Models in Silicon.” Neural Compulers, 467476 (Springer 1989).

. Myvers, Brad A. “A Taxonomy of Window Manager User Interfaces.” [EEL

Computer Graphics and Applications. 8:65-84 (September 1988).

. Myers. Brad A. Softwarc Design: Uscr Interface Deswgn (1), Video lape num-

ber AC-SD-01-24. Carnegie Mellon University, Software Engincering Institute.
1989.

. Myers, Brad A. Software Design: Uscr Interface Design (2), Video tape num-

ber AC-SD-01-25. Carnegie Mellon University. Software Engineering Institute,
1989.

. Myers. Brad A. and Mary Beth Rosson. “Uset Interface Programming Survey.”

SIGCHI Bulletin. 23:27 - 30 (April 1991).

. Nye. Adrian. Xb Programming Manual. Scebastopol CA: O'Reilly & Asso-

ciates. Ine. 1991.

7. Open Software Foundation. Englewood Cliffs. New Jersev. OSF/Motdf'*! Pro-

grammer’s Guide. 1990.

Pountain. Dick. “The X Window Syvstem.” Byfe. 14:353-360 {January 1939).

. Pressman. Rogets S. Softwarc Engincering, A Pracldioners Approach. New

York. New York: McGraw-Hill, Inc. 1937,

. Raalte, Thomas Van. editor. XVicw Refercnce Manual. Sebastopol CA:

O’Reilly & Associates, Inc. 1991.

. Roberts. Stephen D. and Joe Heim. “A perspective on object-oriented simula-

tion.” Proceedings of the 1998 Winter Simulation Conference, 277 - 281 (1988).

2. Rogers. Steven K. and Matthew Kabrisky. An Introduction lo Biological and

Artificial Neural Networks for Pattcrn Recognition. Wright Patterson AFB.
OHIO: Air Force Institute of Technology. 1989.

Rubin. Robert v.. James Walker I1 and Eric Golin. *Design and Implementation
of Programming Environments in the Visual Programmers Workbench.™ Pro-
ceedings of the 14th Annual Intcrnational Compuler Softwarc and Applications
Conference. 547-554. Piscataway, NJ: IEEE Press, 1990.

34. Ruck, Dennis W.. et al. “The Multilayer Perceptron: A Bayes Optimal Dis-
criminant Function Approximator.,” [EEE Transations on Necural Networks (1,
March 1990).

35. Rumbaugh, James and others. Object-Orienled Modcling and Design. Engle-
wood Cliffs. NJ: Prentice Hall. 1991.

36. Scheiflier. Robert W. and others. The X Window System: C Library and Pro-
tocol Reference. Digital Press, 1988.

37. Scheiflier, Robert W. and Jim Gettys. “The X Window System,” ACM Trans-
aclions on Graphies, 5:79-109 (April 1986).

38. Seidewitz. Ed and Mike Stark. “Towards a General Object-Oriented Software
Development Methodology.” Ada Letters. VII:54 - 67 (July., August 1987).

39. Silicon Graphics, Inc. Graphics Library Programming Guide. 1989.
40. Silicon Graphics. Inc. Graphics Library Reference Manual. 1989.

11. Snith. Sydney L. and Jane N. Mosier. Guidclines for Designing User Interface
Software. Bedford MA: MITRI Corporation, August 1986. Contract F19628-
86-C-0001.

12. Sommerville. lan. Softwarc Engincering (Third Edition). Massachusetts:
Addison-Wesley Publishing Company. 1989.

43. Sun Microsystems, Inc. Nelwork Programming, 1990.

4. Sun Microsystems. Inc. Open Windows Version 2 Release Notes, 1990.
15. Sun Microsystems. Inc. Programmang Ulilities and Libraries. 1990.
16. Sun Microsystems. Inc. SunOS Refcrence Manual. 1990.

47. Sun Microsvstems. Inc. SunView Programmer’'s Guidc, 1990.

18. Sun Microsystems, Inc. SunVicw System Programmer’s Guide. 1990.

19. SunSoft. Div of Sun Microsystems. OpenWindows™ Version 3 for SunQS™
4. L. 1991,

30. Szekely, Pedro. “Separating the User Interface from the Functionality of Appli-
cation Programs,” SIGCHI Bulletin, 18:45 - 16 (October 1986).

51. Tarr. Gregory L. Dynamic Analysis of Feedforward Ncural Nelworks using Sim-

ulated and Mcasurcd Data. MS thesis. School of Engineering, Air Force Institute
of Techuology (AU). Wright-Patterson AFB Oll, December 1988.

-
<

Tarr. Gregory L. “AFIT Neural Network Development Tools and Modeling Ar-
tificial Neural Networks.™ SPIF Symposium on Applications of Artificial Neural
Nchworks (1989).

53. Tarr. Gregory L.. et al. “Effective Neural Network Modeling in C.” Proccedings
of the 1991 International Confcrence on Artificial Ncural Nelworks (June 1991).

156

(w14
Ut

SOt
<

it
oo

9.

60.

=1

. Trumbly, James E. and Kirk P. Arnett. “Including a User Interface Management

Systems (UIMS) in the Performance Relationship Model,” SIGCHI Bullctin.
20:56-62 (April 1989).

Unger, Brain W. “Object oriented simulation-Ada. C++, Simula,” Proccedings
of the 1986 Winter Stmulation Conference. 123 - 124 (1986).

Wu, Ching-seh. “ANNS Programmer’s Guide.” In Publication (June 1993).
Wu, Ching-seh. “"ANNS User's Manual,” In Publication (Junc 1993).

Wu, Ching-seh. et al. “A Public Domain X Window Based Artificial Neural
Network Simulator.” Submitted for Publication (June 1993).

Young. Douglas. .X Window Systcms: Programmung and Applications with Xt.
Englewood Cliffs NJ: Prentice Hall. 1989.

Yourdon. Edward. Modern Structured Analysis. Englewood Cliffs. NJ:
Prentice-Hall. Inc, 1989.

<n
-1

Vita

Captain Ching-seh Wu was born on 24 January 1963 in Kaohsiung, Taiwan,
Republic of China (R.0.C.). He graduated from Tzuoving High School in Kaohsiung,
a southern city of Taiwan, in June 1981. He received a Bachelor of Science in
Surveying Enginecring degree at the Chun-Chen Institute of Technology in Taoyuan,
a northern city of Taiwan, in June 1986. After graduation, he was assigned as
a first licutenant of the R.O.C. Air Force and worked as an Intelligence officer at
Taoyuan Air Force Base. In March 1989, he came to United States and attended an
Intelligence Officer Training course for three months at Goodfellow Air Force Base in
Texas. He was accepted into the R.O.C. Air Force Education Program and entered
the School of Engineering at Air Force Institute of Technology (AFIT) of United
States in June, 1991. One month before coming to United States, Captain Wu got

married to Pi-chiao (Joy) Yu and now has a Chinese-American baby: Kevin Wu.

Upon completion of his graduate studics at the Air Force Institute of Technol-

ogy. Captain Wu will begin an assignment at the R.0.C. Air Force Academy.

Permanent address: 16 SanMing Rd. KungSang
Kaohsiung, Taiwan, R.O.C.

June 1993 Master's Thesis

ANNS-An X Window Based Version of the AFIT Neural Network Simulator

Ching-seh Wu

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCF/ENG/931-01

Distribntion Unlimited

Abstract

This thesis presents an X Window based nenral network simulation envirommnent. developed at Air Foree
Tustitnte of Technology (AFIT) using the techuiques of modern software engineering . This artificial nenral
network simnlator is a tool mnning on Sun SPARCstations and supporting two nser modes: end-nsers and
client-programmers. End-nsers jnteract with nenral network paradigins developed by elient-programmers for
the purpose of studying and analyzing the execution of a partienlar Newral Network (NN) paradigie., or elass
of XN algorithins, Client programmers maintain the system and use this environment for the developent
of new NN paradigms or algorithms for end-nsers. The development follows a hybried software engineering
paradigmn which combines the best characteristies of the elassic life eyele. prototype. and iterative method-
ologies through requirements, design. implementation, and testing. An object-oriented approach is nsed for
the design including preliminary and detailed design. The system is implemented with the ¢ progranuning
langnage on Sun workstation and nses the XView window-based environment. It provides nsers with a variety
of control and input options: simulation speed control, multiple and simnttancons NN algorithm sinmlations.
and simulation environment control.

Nenral Network Simunlator. Xview. C

UNCLASSIFIED UNCLASSIFIED NCLASSIFIED UL

